Worksheet 6: Hypothesis Testing Practice

One-Sample Tests & Linear Regression

PSTAT 5A

July 29, 2025

Instructions

Objectives: Practice t-tests, z-tests, and basic linear regression **Guidelines:** Show all work, use $\alpha = 0.05$, round to 3 decimal places

Part I: One-Sample t-Test

Quick Reference

Use when: σ unknown Test statistic: $t = \frac{\bar{x} - \mu_0}{s/\sqrt{n}}$ df: n-1

Problem 1: Coffee Shop Claims

A coffee shop claims average wait time is 4 minutes. A sample of 8 customers shows wait times:

$$3.2, 4.5, 3.8, 4.1, 3.6, 4.3, 3.9, 4.2$$

Part II: One-Sample z-Test

Quick Reference

Use when: σ known Test statistic: $z = \frac{\bar{x} - \mu_0}{\sigma/\sqrt{n}}$

Problem 2: Quality Control

A factory produces bolts with target diameter 10.0 mm. Population $\sigma = 0.15$ mm. A sample of 25 bolts has $\bar{x} = 9.94$ mm. Test if the process meets the target.

Hypotheses: H_0 : _____ σ = _____ \bar{x} = _____ n = _____

Test Statistic: z =_____

Critical Value(s): _____ Decision: _____

When to Use Which Test?

Part III: Linear Regression

A study examines the relationship between study hours (x) and exam scores (y) for 6 students:

Student	1	2	3	4	5	6
Hours (x)	2	4	6	8	10	12
Score (y)	65	70	80	85	90	95

Given summary statistics: $\sum x = 42$, $\sum y = 485$, $\sum x^2 = 364$, $\sum y^2 = 485$ $39,975, \sum xy = 3,620$

Question 1: Basic Calculations

- a) Sample means: $\bar{x} = \underline{\qquad} \bar{y} = \underline{\qquad}$ b) Slope: $b_1 = \frac{\sum xy n\bar{x}\bar{y}}{\sum x^2 n\bar{x}^2} = \underline{\qquad}$ c) Y-intercept: $b_0 = \bar{y} b_1\bar{x} = \underline{\qquad}$

 - d) Regression equation: $\hat{y} = \underline{\hspace{1cm}}$

Question 2: Interpretation

- a) Predict the exam score for a student who studies 7 hours:
 - **b)** Interpret the slope in context:

Question 3: Correlation