

Q1: Mean of $\{2, 4, 6, 8, 10\}$.

$$\bar{x} = \frac{2+4+6+8+10}{5} = \frac{30}{5} = 6.$$

Answer: 6

Q2: Measure of central tendency most affected by outliers.

The arithmetic mean shifts the most when extreme values are added. Answer: Mean

Q3: Median of $\{1, 3, 3, 5, 7, 8, 12\}$.

For 7 ordered values, the median is the 4^{th} : 5. **Answer:** $\boxed{5}$

Q4: Sign of the standard deviation.

Standard deviation is the square root of a variance and is therefore ≥ 0 . It equals 0 only for constant data and is positive otherwise. **Answer: Always non-negative (positive)**

Q5: Standard deviation given variance 16.

$$\sigma = \sqrt{16} = 4.$$

Answer: 4

 $\mathbf{Q6:}\ \mathit{Fill-in-the-blanks}.$

(a) The **mode** is the value that appears most frequently.

Answer: mode

- (b) The difference between the maximum and minimum is the **range**.
- Answer: range
 (c) The 50th percentile equals the median.

Answer: median

Q7: P(A) = 0.3, P(B) = 0.4 are mutually exclusive.

$$P(A \cup B) = P(A) + P(B) = 0.7.$$

Answer: 0.7

Q8: Valid probabilities satisfy $0 \le P(E) \le 1$. Answer: Between 0 and 1

Q9: Even outcomes on a fair die: $\{2,4,6\}$.

$$P(\text{even}) = \frac{3}{6} = \frac{1}{2}.$$

Answer: $\frac{1}{2}$

Q10: Complement of 0.25: 1 - 0.25 = 0.75. **Answer:** 0.75

Q11: P(A) = 0.6, P(B) = 0.5, $P(A \cup B) = 0.8$.

$$P(A \cap B) = P(A) + P(B) - P(A \cup B) = 0.3.$$

Answer: 0.3

Q12: Bag totals: 5 + 3 + 2 = 10.

$$P(\text{blue}) = \frac{3}{10} = 0.300.$$

Answer: 0.300

Q13: The notation $P(A \mid B)$ means "probability of A given B." **Answer: "probability** of A given B"

Q14: P(A) = 0.4, P(B) = 0.3, $P(A \cap B) = 0.12$.

$$P(A \mid B) = \frac{0.12}{0.30} = 0.4.$$

Answer: 0.4

Q15: $P(\text{King} \mid \text{face})$. There are 4 kings in the 12 face cards:

$$P = \frac{4}{12} = \frac{1}{3}.$$

Answer: $\frac{4}{12}$

Q16: If $P(A \mid B) = P(A)$, events A and B are independent. Answer: independent

Q17: True/False. Two independent events cannot be mutually exclusive unless one has probability 0. Answer: True

Q18: Select all that are true for independence.

$$P(A \cap B) = P(A)P(B), \qquad P(A \mid B) = P(A).$$

Answer: $P(A \cap B) = P(A)P(B)$

Q19: For independent $A, B: P(A \cap B) = 0.4 \times 0.6 = 0.24$. **Answer:** 0.24

 ${\bf Q20:}\ \, \textit{Mutually exclusive but not independent}.$

"Drawing a heart" vs. "drawing a spade" in one card draw: $P(\text{heart} \cap \text{spade}) = 0$. We draw one card at random from a standard deck of 52.

$$\Omega = \{ \text{all 52 distinct cards} \}, \qquad \Pr(\{ \text{each card} \}) = \frac{1}{52}.$$

The two events are:

$$H = \{ \text{the card is a Heart} \}, \qquad S = \{ \text{the card is a Spade} \}.$$

Each suit has 13 cards:

$$Pr(H) = \frac{13}{52} = \frac{1}{4}, \qquad Pr(S) = \frac{13}{52} = \frac{1}{4}.$$

Hearts and spades share no common card, so

$$H \cap S = \emptyset \implies \Pr(H \cap S) = 0.$$

Events H and S would be independent iff

$$Pr(H \cap S) = Pr(H) Pr(S).$$

Checking the independence criterion gives

$$\Pr(H) \Pr(S) = \frac{1}{4} \times \frac{1}{4} = \frac{1}{16} = 0.0625 \neq \Pr(H \cap S) = 0.$$

Since the equality fails, H and S are not independent.

"Drawing a heart" and "drawing a spade" are mutually exclusive but not independent.

Answer: Drawing a heart and drawing a spade.

Q21: A factory produces widgets with a 5% defect rate. You randomly select three widgets, each selection independent. Let

$$p = \Pr(\text{defective}) = 0.05, \qquad q = 1 - p = \Pr(\text{non-defective}) = 0.95.$$

a) Probability all three widgets are non-defective.

$$Pr(\text{all 3 good}) = q^3 = 0.95^3 = 0.857375 \approx 0.857.$$

Answer: 0.857 (to three decimals)

Why? For each widget the chance of being good is q. Independence \Longrightarrow multiply the three identical factors.

b) Probability that at least one widget is defective.

"At least one defective" means the complement of "all three good," so

 $Pr(\text{at least 1 defective}) = 1 - Pr(\text{all 3 good}) = 1 - q^3 = 1 - 0.857375 = 0.142625 \approx 0.143.$

Answer: 0.143