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1 Understanding Relationships Between Variables

In statistics, we often want to understand how two quantitative variables are related to
each other. For example:

• How does study time relate to exam scores?

• Is there a relationship between height and weight?

• Can we predict house prices based on square footage?

Key Concepts

• Explanatory Variable (x): The variable we use to explain or predict (in-
dependent variable)

• Response Variable (y): The variable we want to predict or explain (de-
pendent variable)

• Correlation: Measures the strength and direction of a linear relationship

• Regression: Uses one variable to predict another variable

1.1 Types of Relationships
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2 Correlation Coefficient

The correlation coefficient r (also called Pearson’s correlation) measures the strength and
direction of a linear relationship between two variables.

Definition 2.1 (Correlation Coefficient). The sample correlation coefficient is calculated
as:

r =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
∑n

i=1(yi − ȳ)2

Alternative computational formula:

r =
n
∑

xy − (
∑

x)(
∑

y)√
[n

∑
x2 − (

∑
x)2][n

∑
y2 − (

∑
y)2]
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2.1 Properties of Correlation

Key Properties of r

1. Range: −1 ≤ r ≤ +1

2. Direction:

• r > 0: Positive linear relationship

• r < 0: Negative linear relationship

• r = 0: No linear relationship

3. Strength:

• |r| ≥ 0.8: Strong relationship

• 0.3 ≤ |r| < 0.8: Moderate relationship

• |r| < 0.3: Weak relationship

4. Units: Correlation is unitless (no measurement units)

5. Symmetry: rxy = ryx

2.2 Correlation Interpretation Guide
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Example 2.1 (Calculating Correlation). Calculate the correlation between study hours
(x) and exam scores (y):

Student Hours (x) Score (y) x2 y2 xy
1 2 65 4 4225 130
2 4 70 16 4900 280
3 6 80 36 6400 480
4 8 85 64 7225 680
5 10 90 100 8100 900

Sum 30 390 220 30850 2470
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Using the computational formula:

r =
n
∑

xy − (
∑

x)(
∑

y)√
[n

∑
x2 − (

∑
x)2][n

∑
y2 − (

∑
y)2]

(1)

=
5(2470)− (30)(390)√

[5(220)− (30)2][5(30850)− (390)2]
(2)

=
12350− 11700√

[1100− 900][154250− 152100]
(3)

=
650√

(200)(2150)
(4)

=
650√
430000

=
650

655.74
≈ 0.991 (5)

This indicates a very strong positive correlation between study hours and exam scores.

3 Simple Linear Regression

Linear regression allows us to model the relationship between two variables using a
straight line, and make predictions.

Definition 3.1 (Simple Linear Regression Model). The simple linear regression model
is:

y = β0 + β1x+ ϵ

where:

• y = response variable

• x = explanatory variable

• β0 = y-intercept (population parameter)

• β1 = slope (population parameter)

• ϵ = random error term

3.1 Sample Regression Line

Since we don’t know the true population parameters, we estimate them from sample data:
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Sample Regression Equation

ŷ = b0 + b1x

where:

• ŷ = predicted value of y

• b0 = sample y-intercept

• b1 = sample slope

Formulas:

b1 =

∑
xy − nx̄ȳ∑
x2 − nx̄2

=

∑
(xi − x̄)(yi − ȳ)∑

(xi − x̄)2
(6)

b0 = ȳ − b1x̄ (7)

3.2 Visual Representation of Regression
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3.3 Interpretation of Regression Components

Interpreting Regression Components

Slope (b1):

• Represents the change in y for each one-unit increase in x

• Units: (units of y) per (unit of x)

• Example: ”For each additional hour of study, exam score increases by 2.5
points on average”

Y-intercept (b0):

• The predicted value of y when x = 0

• May or may not have practical meaning depending on context

• Example: ”A student who studies 0 hours is predicted to score 60.5 points”

Example 3.1 (Finding the Regression Line). Using our study hours and exam scores
data from earlier:

Step 1: Calculate the slope

b1 =

∑
xy − nx̄ȳ∑
x2 − nx̄2

(8)

=
2470− 5(6)(78)

220− 5(6)2
(9)

=
2470− 2340

220− 180
(10)

=
130

40
= 3.25 (11)

Step 2: Calculate the y-intercept

b0 = ȳ − b1x̄ (12)

= 78− 3.25(6) (13)

= 78− 19.5 = 58.5 (14)

Step 3: Write the regression equation

ŷ = 58.5 + 3.25x

Interpretation: For each additional hour of study, exam score increases by 3.25
points on average.

4 Making Predictions and Understanding Residuals

4.1 Predictions

Once we have the regression equation, we can make predictions for new values of x.
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Making Predictions

Steps for prediction:

1. Substitute the x-value into the regression equation

2. Calculate ŷ = b0 + b1x

3. Interpret the result in context

Important considerations:

• Only predict within the range of observed x-values (avoid extrapolation)

• Predictions are estimates with uncertainty

• The relationship may not hold outside the observed range

4.2 Residuals and Model Fit

Definition 4.1 (Residual). A residual is the difference between the observed value and
the predicted value:

Residual = y − ŷ = Observed− Predicted
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Visualizing Residuals

4.3 Properties of Residuals

Key Properties of Residuals

1. The sum of residuals equals zero:
∑

(yi − ŷi) = 0

2. Small residuals indicate good fit

3. Large residuals suggest outliers or poor model fit

4. Residual plots help check regression assumptions
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5 Coefficient of Determination (R2)

The coefficient of determination measures how much of the variation in y is explained by
the regression line.

Definition 5.1 (Coefficient of Determination).

R2 = r2 =
Variation explained by regression

Total variation in y

Alternative formulas:

R2 = 1−
∑

(yi − ŷi)
2∑

(yi − ȳ)2
(15)

R2 =

∑
(ŷi − ȳ)2∑
(yi − ȳ)2

(16)

5.1 Interpreting R2

Total Variation in y

Explained by regressionUnexplained

R2 = Blue area
Total area

R2 = 0.25 R2 = 0.64 R2 = 0.90

Interpreting R2 Values

• Range: 0 ≤ R2 ≤ 1 (often expressed as percentage)

• R2 = 0: Regression line explains 0% of variation (no linear relationship)

• R2 = 1: Regression line explains 100% of variation (perfect linear relation-
ship)

• R2 = 0.64: ”64% of the variation in y is explained by the linear relationship
with x”

Rule of thumb:

• R2 ≥ 0.70: Strong predictive relationship

• 0.30 ≤ R2 < 0.70: Moderate predictive relationship

• R2 < 0.30: Weak predictive relationship

8



PSTAT 5A - Class Notes

6 Conditions for Linear Regression

Before using linear regression, we must check that certain conditions are met.

CONDITIONS: LINE

Linear relationship between x and y
Independent observations
Normal distribution of residuals
Equal variance (homoscedasticity)

6.1 Checking Conditions

6.1.1 1. Linear Relationship

• Check scatterplot for linear pattern

• Look for curved or nonlinear patterns

• Consider transformations if relationship is not linear

6.1.2 2. Independence

• Observations should not be related to each other

• Random sampling helps ensure independence

• Be careful with time series data or clustered data

6.1.3 3. Normal Residuals

• Check histogram or normal probability plot of residuals

• Residuals should be approximately normally distributed

• Small departures from normality are often acceptable

6.1.4 4. Equal Variance

• Plot residuals vs. fitted values

• Look for constant spread (no fan shape)

• Residual spread should be similar across all x-values

6.2 Diagnostic Plots
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7 Hypothesis Testing for Regression Slope

We can test whether there is a significant linear relationship between x and y by testing
the slope.

Hypothesis Test for Slope

Hypotheses:

H0 : β1 = 0 (no linear relationship) (17)

Ha : β1 ̸= 0 (linear relationship exists) (18)

Test statistic:

t =
b1 − 0

SEb1

=
b1

SEb1

where SEb1 is the standard error of the slope.
Distribution: t with df = n− 2

7.1 Standard Error of the Slope

SEb1 =
s√∑

(xi − x̄)2

where s is the residual standard error:

s =

√∑
(yi − ŷi)2

n− 2

Example 7.1 (Testing Regression Slope). For our study hours and exam scores example,
suppose we find:

• b1 = 3.25 (slope)

• SEb1 = 0.45 (standard error of slope)

• n = 5 students

Test at α = 0.05 whether there is a significant relationship.
Solution:

1. Hypotheses: H0 : β1 = 0 vs. Ha : β1 ̸= 0

2. Test statistic:

t =
3.25

0.45
= 7.22

3. Degrees of freedom: df = 5− 2 = 3

4. Critical value: t0.025,3 = 3.182

5. Decision: Since |7.22| > 3.182, reject H0

6. Conclusion: There is significant evidence of a linear relationship between study
hours and exam scores.
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8 Complete Worked Example

Let’s work through a comprehensive regression analysis.

Example 8.1 (House Prices and Square Footage). A real estate agent collected data on
8 houses:

House Sq Ft (x) Price ($1000s) (y) x2 y2 xy
1 1200 150 1,440,000 22,500 180,000
2 1500 180 2,250,000 32,400 270,000
3 1800 210 3,240,000 44,100 378,000
4 2000 240 4,000,000 57,600 480,000
5 2200 260 4,840,000 67,600 572,000
6 2500 290 6,250,000 84,100 725,000
7 2800 320 7,840,000 102,400 896,000
8 3000 350 9,000,000 122,500 1,050,000

Sum 17,000 2,000 38,860,000 533,200 4,551,000

Part 1: Calculate basic statistics

x̄ =
17, 000

8
= 2, 125 sq ft (19)

ȳ =
2, 000

8
= 250 thousand dollars (20)

Part 2: Calculate correlation

r =
n
∑

xy − (
∑

x)(
∑

y)√
[n

∑
x2 − (

∑
x)2][n

∑
y2 − (

∑
y)2]

(21)

=
8(4, 551, 000)− (17, 000)(2, 000)√

[8(38, 860, 000)− (17, 000)2][8(533, 200)− (2, 000)2]
(22)

=
36, 408, 000− 34, 000, 000√

[310, 880, 000− 289, 000, 000][4, 265, 600− 4, 000, 000]
(23)

=
2, 408, 000√

(21, 880, 000)(265, 600)
(24)

=
2, 408, 000

2, 411, 651
≈ 0.998 (25)

Part 3: Find regression line

b1 =

∑
xy − nx̄ȳ∑
x2 − nx̄2

(26)

=
4, 551, 000− 8(2, 125)(250)

38, 860, 000− 8(2, 125)2
(27)

=
4, 551, 000− 4, 250, 000

38, 860, 000− 36, 125, 000
(28)

=
301, 000

2, 735, 000
≈ 0.110 (29)
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b0 = ȳ − b1x̄ (30)

= 250− 0.110(2, 125) (31)

= 250− 233.75 = 16.25 (32)

Regression equation: ŷ = 16.25 + 0.110x
Part 4: Interpretation

• Slope: For each additional square foot, house price increases by $110 on average

• Y-intercept: A house with 0 square feet would cost $16,250 (not meaningful in
context)

• Correlation: r = 0.998 indicates a very strong positive linear relationship

• R2: R2 = (0.998)2 = 0.996, so 99.6% of price variation is explained by square
footage

Part 5: Make a prediction Predict the price of a 2,400 square foot house:

ŷ = 16.25 + 0.110(2, 400) = 16.25 + 264 = 280.25

The predicted price is $280,250.

9 Summary and Quick Reference

Key Formulas Summary

Correlation:

r =
n
∑

xy − (
∑

x)(
∑

y)√
[n

∑
x2 − (

∑
x)2][n

∑
y2 − (

∑
y)2]

Regression Line:

ŷ = b0 + b1x where b1 =

∑
xy − nx̄ȳ∑
x2 − nx̄2

, b0 = ȳ − b1x̄

Coefficient of Determination:

R2 = r2

Hypothesis Test for Slope:

t =
b1

SEb1

with df = n− 2
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Common Mistakes to Avoid

1. Correlation vs. Causation: High correlation doesn’t imply causation

2. Extrapolation: Don’t predict outside the range of observed x-values

3. Ignoring Conditions: Always check LINE conditions before using regres-
sion

4. Overinterpreting R2: High R2 doesn’t guarantee a good model

5. Wrong Units: Pay attention to units in slope interpretation

Regression Analysis Checklist

Before Analysis:

• Create scatterplot to visualize relationship

• Check for outliers and influential points

• Verify conditions (LINE)

During Analysis:

• Calculate correlation coefficient

• Find regression equation

• Interpret slope and y-intercept in context

• Calculate R2 and interpret

After Analysis:

• Check residual plots for model adequacy

• Test significance of regression slope

• Make predictions within appropriate range

• State conclusions in context
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