Lecture Notes: Linear Regression & Correlation Analysis

PSTAT 5A

$July\ 31,\ 2025$

Contents

1	Understanding Relationships Between Variables 1.1 Types of Relationships	2
2	Correlation Coefficient 2.1 Properties of Correlation	
3	Simple Linear Regression 3.1 Sample Regression Line	4 5
4	Making Predictions and Understanding Residuals4.1 Predictions4.2 Residuals and Model Fit4.3 Properties of Residuals	7
5	Coefficient of Determination (R^2) 5.1 Interpreting R^2	8
6	Conditions for Linear Regression 6.1 Checking Conditions 6.1.1 1. Linear Relationship 6.1.2 2. Independence 6.1.3 3. Normal Residuals 6.1.4 4. Equal Variance 6.2 Diagnostic Plots	6 6 6 6 6
7	V1	10
8	Complete Worked Example	11
9	Summary and Quick Reference	12

1 Understanding Relationships Between Variables

In statistics, we often want to understand how two quantitative variables are related to each other. For example:

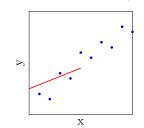
- How does study time relate to exam scores?
- Is there a relationship between height and weight?
- Can we predict house prices based on square footage?

Key Concepts

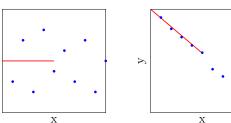
- Explanatory Variable (x): The variable we use to explain or predict (independent variable)
- Response Variable (y): The variable we want to predict or explain (dependent variable)
- Correlation: Measures the strength and direction of a linear relationship
- Regression: Uses one variable to predict another variable

1.1 Types of Relationships

Strong Positive $r \approx +0.9$ Weak Positive $r \approx +0.3$



No Correlation $r \approx 0$ Strong Negative $r \approx -0.9$



2 Correlation Coefficient

The correlation coefficient r (also called Pearson's correlation) measures the strength and direction of a linear relationship between two variables.

Definition 2.1 (Correlation Coefficient). The sample correlation coefficient is calculated as:

$$r = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2 \sum_{i=1}^{n} (y_i - \bar{y})^2}}$$

Alternative computational formula:

$$r = \frac{n\sum xy - (\sum x)(\sum y)}{\sqrt{[n\sum x^2 - (\sum x)^2][n\sum y^2 - (\sum y)^2]}}$$

2.1 Properties of Correlation

Key Properties of r

1. Range: $-1 \le r \le +1$

2. Direction:

• r > 0: Positive linear relationship

• r < 0: Negative linear relationship

• r = 0: No linear relationship

3. Strength:

• $|r| \ge 0.8$: Strong relationship

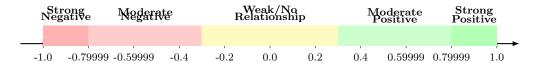
• $0.3 \le |r| < 0.8$: Moderate relationship

• |r| < 0.3: Weak relationship

4. Units: Correlation is unitless (no measurement units)

5. Symmetry: $r_{xy} = r_{yx}$

2.2 Correlation Interpretation Guide



Example 2.1 (Calculating Correlation). Calculate the correlation between study hours (x) and exam scores (y):

Student	Hours (x)	Score (y)	x^2	y^2	xy
1	2	65	4	4225	130
2	4	70	16	4900	280
3	6	80	36	6400	480
4	8	85	64	7225	680
5	10	90	100	8100	900
Sum	30	390	220	30850	2470

Using the computational formula:

$$r = \frac{n\sum xy - (\sum x)(\sum y)}{\sqrt{[n\sum x^2 - (\sum x)^2][n\sum y^2 - (\sum y)^2]}}$$

$$= \frac{5(2470) - (30)(390)}{\sqrt{[5(220) - (30)^2][5(30850) - (390)^2]}}$$
(2)

$$= \frac{5(2470) - (30)(390)}{\sqrt{[5(220) - (30)^2][5(30850) - (390)^2]}}$$
(2)

$$= \frac{12350 - 11700}{\sqrt{[1100 - 900][154250 - 152100]}} \tag{3}$$

$$= \frac{12350 - 11700}{\sqrt{[1100 - 900][154250 - 152100]}}$$

$$= \frac{650}{\sqrt{(200)(2150)}}$$
(3)

$$=\frac{650}{\sqrt{430000}} = \frac{650}{655.74} \approx 0.991\tag{5}$$

This indicates a very strong positive correlation between study hours and exam scores.

Simple Linear Regression 3

Linear regression allows us to model the relationship between two variables using a straight line, and make predictions.

Definition 3.1 (Simple Linear Regression Model). The simple linear regression model is:

$$y = \beta_0 + \beta_1 x + \epsilon$$

where:

- $y = response \ variable$
- \bullet x = explanatory variable
- $\beta_0 = y$ -intercept (population parameter)
- $\beta_1 = slope \ (population \ parameter)$
- $\epsilon = random \ error \ term$

3.1 Sample Regression Line

Since we don't know the true population parameters, we estimate them from sample data:

Sample Regression Equation

$$\hat{y} = b_0 + b_1 x$$

where:

- $\hat{y} = \text{predicted value of y}$
- $b_0 = \text{sample y-intercept}$
- $b_1 = \text{sample slope}$

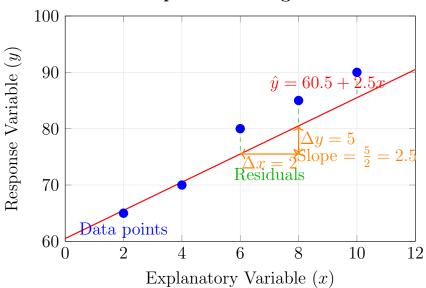
Formulas:

$$b_1 = \frac{\sum xy - n\bar{x}\bar{y}}{\sum x^2 - n\bar{x}^2} = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2}$$
(6)

$$b_0 = \bar{y} - b_1 \bar{x} \tag{7}$$

3.2 Visual Representation of Regression

Simple Linear Regression



3.3 Interpretation of Regression Components

Interpreting Regression Components

Slope (b_1) :

- Represents the change in y for each one-unit increase in x
- Units: (units of y) per (unit of x)
- Example: "For each additional hour of study, exam score increases by 2.5 points on average"

Y-intercept (b_0) :

- The predicted value of y when x = 0
- May or may not have practical meaning depending on context
- Example: "A student who studies 0 hours is predicted to score 60.5 points"

Example 3.1 (Finding the Regression Line). Using our study hours and exam scores data from earlier:

Step 1: Calculate the slope

$$b_1 = \frac{\sum xy - n\bar{x}\bar{y}}{\sum x^2 - n\bar{x}^2} \tag{8}$$

$$=\frac{2470 - 5(6)(78)}{220 - 5(6)^2} \tag{9}$$

$$=\frac{2470-2340}{220-180}\tag{10}$$

$$=\frac{130}{40}=3.25\tag{11}$$

Step 2: Calculate the y-intercept

$$b_0 = \bar{y} - b_1 \bar{x} \tag{12}$$

$$= 78 - 3.25(6) \tag{13}$$

$$= 78 - 19.5 = 58.5 \tag{14}$$

Step 3: Write the regression equation

$$\hat{y} = 58.5 + 3.25x$$

Interpretation: For each additional hour of study, exam score increases by 3.25 points on average.

4 Making Predictions and Understanding Residuals

4.1 Predictions

Once we have the regression equation, we can make predictions for new values of x.

Making Predictions

Steps for prediction:

- 1. Substitute the x-value into the regression equation
- 2. Calculate $\hat{y} = b_0 + b_1 x$
- 3. Interpret the result in context

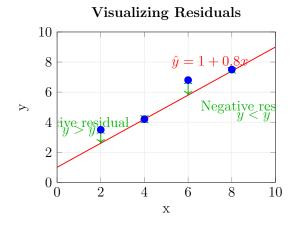
Important considerations:

- Only predict within the range of observed x-values (avoid extrapolation)
- Predictions are estimates with uncertainty
- The relationship may not hold outside the observed range

4.2 Residuals and Model Fit

Definition 4.1 (Residual). A residual is the difference between the observed value and the predicted value:

$$Residual = y - \hat{y} = Observed - Predicted$$



4.3 Properties of Residuals

Key Properties of Residuals

- 1. The sum of residuals equals zero: $\sum (y_i \hat{y}_i) = 0$
- 2. Small residuals indicate good fit
- 3. Large residuals suggest outliers or poor model fit
- 4. Residual plots help check regression assumptions

5 Coefficient of Determination (R^2)

The coefficient of determination measures how much of the variation in y is explained by the regression line.

Definition 5.1 (Coefficient of Determination).

$$R^2 = r^2 = rac{Variation \ explained \ by \ regression}{Total \ variation \ in \ y}$$

Alternative formulas:

$$R^{2} = 1 - \frac{\sum (y_{i} - \hat{y}_{i})^{2}}{\sum (y_{i} - \bar{y})^{2}}$$
(15)

$$R^{2} = \frac{\sum (\hat{y}_{i} - \bar{y})^{2}}{\sum (y_{i} - \bar{y})^{2}}$$
 (16)

5.1 Interpreting R^2

Total Variation in y

Explained by regression Unexplained

$$R^2 = \frac{\text{Blue area}}{\text{Total area}}$$

 $R^2 = 0.25$ $R^2 = 0.64$ $R^2 = 0.90$

Interpreting R^2 Values

- Range: $0 \le R^2 \le 1$ (often expressed as percentage)
- $R^2 = 0$: Regression line explains 0% of variation (no linear relationship)
- $R^2 = 1$: Regression line explains 100% of variation (perfect linear relationship)
- $R^2 = 0.64$: "64% of the variation in y is explained by the linear relationship with x"

Rule of thumb:

- $R^2 \ge 0.70$: Strong predictive relationship
- $0.30 \le R^2 < 0.70$: Moderate predictive relationship
- $R^2 < 0.30$: Weak predictive relationship

6 Conditions for Linear Regression

Before using linear regression, we must check that certain conditions are met.

CONDITIONS: LINE

Linear relationship between x and y

Independent observations

Normal distribution of residuals

Equal variance (homoscedasticity)

6.1 Checking Conditions

6.1.1 1. Linear Relationship

- Check scatterplot for linear pattern
- Look for curved or nonlinear patterns
- Consider transformations if relationship is not linear

6.1.2 2. Independence

- Observations should not be related to each other
- Random sampling helps ensure independence
- Be careful with time series data or clustered data

6.1.3 3. Normal Residuals

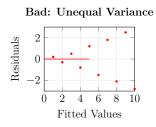
- Check histogram or normal probability plot of residuals
- Residuals should be approximately normally distributed
- Small departures from normality are often acceptable

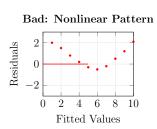
6.1.4 4. Equal Variance

- Plot residuals vs. fitted values
- Look for constant spread (no fan shape)
- Residual spread should be similar across all x-values

6.2 Diagnostic Plots

Good: Equal Variance $\begin{array}{c} \text{Sign} \\ \text{Sign} \\ \text{O} \\ \text{$





7 Hypothesis Testing for Regression Slope

We can test whether there is a significant linear relationship between x and y by testing the slope.

Hypothesis Test for Slope

Hypotheses:

$$H_0: \beta_1 = 0 \quad \text{(no linear relationship)}$$
 (17)

$$H_a: \beta_1 \neq 0$$
 (linear relationship exists) (18)

Test statistic:

$$t = \frac{b_1 - 0}{SE_{b_1}} = \frac{b_1}{SE_{b_1}}$$

where SE_{b_1} is the standard error of the slope.

Distribution: t with df = n - 2

7.1 Standard Error of the Slope

$$SE_{b_1} = \frac{s}{\sqrt{\sum (x_i - \bar{x})^2}}$$

where s is the residual standard error:

$$s = \sqrt{\frac{\sum (y_i - \hat{y}_i)^2}{n - 2}}$$

Example 7.1 (Testing Regression Slope). For our study hours and exam scores example, suppose we find:

- $b_1 = 3.25 \ (slope)$
- $SE_{b_1} = 0.45$ (standard error of slope)
- n = 5 students

Test at $\alpha = 0.05$ whether there is a significant relationship. **Solution:**

- 1. **Hypotheses:** $H_0: \beta_1 = 0 \ vs. \ H_a: \beta_1 \neq 0$
- 2. Test statistic:

$$t = \frac{3.25}{0.45} = 7.22$$

- 3. **Degrees of freedom:** df = 5 2 = 3
- 4. Critical value: $t_{0.025,3} = 3.182$
- 5. **Decision:** Since |7.22| > 3.182, reject H_0
- 6. Conclusion: There is significant evidence of a linear relationship between study hours and exam scores.

Complete Worked Example

Let's work through a comprehensive regression analysis.

Example 8.1 (House Prices and Square Footage). A real estate agent collected data on 8 houses:

House	Sq Ft (x)	Price (\$1000s) (y)	x^2	y^2	xy
1	1200	150	1,440,000	22,500	180,000
2	1500	180	2,250,000	32,400	270,000
3	1800	210	3,240,000	44,100	378,000
4	2000	240	4,000,000	57,600	480,000
5	2200	260	4,840,000	67,600	572,000
6	2500	290	6,250,000	84,100	725,000
γ	2800	320	7,840,000	102,400	896,000
8	3000	350	9,000,000	122,500	1,050,000
Sum	17,000	2,000	38,860,000	533,200	4,551,000

Part 1: Calculate basic statistics

$$\bar{x} = \frac{17,000}{8} = 2,125 \ sq ft$$
 (19)

$$\bar{y} = \frac{2,000}{8} = 250 \text{ thousand dollars} \tag{20}$$

Part 2: Calculate correlation

$$r = \frac{n \sum xy - (\sum x)(\sum y)}{\sqrt{[n \sum x^2 - (\sum x)^2][n \sum y^2 - (\sum y)^2]}}$$

$$= \frac{8(4,551,000) - (17,000)(2,000)}{\sqrt{[8(38,860,000) - (17,000)^2][8(533,200) - (2,000)^2]}}$$

$$= \frac{36,408,000 - 34,000,000}{\sqrt{[310,880,000 - 289,000,000][4,265,600 - 4,000,000]}}$$
(23)

$$= \frac{8(4,551,000) - (17,000)(2,000)}{\sqrt{[8(38,860,000) - (17,000)^2][8(533,200) - (2,000)^2]}}$$
(22)

$$= \frac{36,408,000 - 34,000,000}{\sqrt{[310,880,000 - 289,000,000][4,265,600 - 4,000,000]}}$$
(23)

$$= \frac{2,408,000}{\sqrt{(21,880,000)(265,600)}}$$
(24)

$$=\frac{2,408,000}{2,411,651}\approx 0.998\tag{25}$$

Part 3: Find regression line

$$b_1 = \frac{\sum xy - n\bar{x}\bar{y}}{\sum x^2 - n\bar{x}^2} \tag{26}$$

$$= \frac{4,551,000 - 8(2,125)(250)}{38,860,000 - 8(2,125)^2}$$
(27)

$$= \frac{4,551,000 - 8(2,125)(250)}{38,860,000 - 8(2,125)^2}$$

$$= \frac{4,551,000 - 4,250,000}{38,860,000 - 36,125,000}$$
(28)

$$=\frac{301,000}{2,735,000}\approx 0.110\tag{29}$$

$$b_0 = \bar{y} - b_1 \bar{x} \tag{30}$$

$$= 250 - 0.110(2, 125) \tag{31}$$

$$= 250 - 233.75 = 16.25 \tag{32}$$

Regression equation: $\hat{y} = 16.25 + 0.110x$ Part 4: Interpretation

- Slope: For each additional square foot, house price increases by \$110 on average
- **Y-intercept:** A house with 0 square feet would cost \$16,250 (not meaningful in context)
- Correlation: r = 0.998 indicates a very strong positive linear relationship
- R^2 : $R^2 = (0.998)^2 = 0.996$, so 99.6% of price variation is explained by square footage

Part 5: Make a prediction Predict the price of a 2,400 square foot house:

$$\hat{y} = 16.25 + 0.110(2,400) = 16.25 + 264 = 280.25$$

The predicted price is \$280,250.

9 Summary and Quick Reference

Key Formulas Summary

Correlation:

$$r = \frac{n\sum xy - (\sum x)(\sum y)}{\sqrt{[n\sum x^2 - (\sum x)^2][n\sum y^2 - (\sum y)^2]}}$$

Regression Line:

$$\hat{y} = b_0 + b_1 x$$
 where $b_1 = \frac{\sum xy - n\bar{x}\bar{y}}{\sum x^2 - n\bar{x}^2}$, $b_0 = \bar{y} - b_1\bar{x}$

Coefficient of Determination:

$$R^2 = r^2$$

Hypothesis Test for Slope:

$$t = \frac{b_1}{SE_{b_1}} \quad \text{with } df = n - 2$$

Common Mistakes to Avoid

- 1. Correlation vs. Causation: High correlation doesn't imply causation
- 2. Extrapolation: Don't predict outside the range of observed x-values
- 3. **Ignoring Conditions:** Always check LINE conditions before using regression
- 4. Overinterpreting R^2 : High R^2 doesn't guarantee a good model
- 5. Wrong Units: Pay attention to units in slope interpretation

Regression Analysis Checklist

Before Analysis:

- Create scatterplot to visualize relationship
- Check for outliers and influential points
- Verify conditions (LINE)

During Analysis:

- Calculate correlation coefficient
- Find regression equation
- Interpret slope and y-intercept in context
- Calculate R^2 and interpret

After Analysis:

- Check residual plots for model adequacy
- Test significance of regression slope
- Make predictions within appropriate range
- State conclusions in context