# Lecture Notes: Hypothesis Testing & Statistical Inference

## PSTAT 5A

July 31, 2025

## Contents

| 1        | From Population to Inference                                                                                                                                                                                                                                                                                                                                                             | 3                                         |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| <b>2</b> | Point Estimates vs. Interval Estimates                                                                                                                                                                                                                                                                                                                                                   | 3                                         |
| 3        | The Bridge: Confidence Intervals $\leftrightarrow$ Hypothesis Tests                                                                                                                                                                                                                                                                                                                      | 4                                         |
| 4        | Introduction to Hypothesis Testing 4.1 Core Vocabulary                                                                                                                                                                                                                                                                                                                                   | <b>4</b> 5                                |
| 5        | Understanding P-values  5.1 P-value Properties and Interpretation  5.2 P-value Strength Guide  5.3 Common P-value Misconceptions  5.4 P-value Examples with Context  5.5 Determining the Direction: One-Tailed vs. Two-Tailed Tests  5.5.1 How to Choose the Direction  5.5.2 Visual Guide to Critical Regions  5.5.3 Common Keywords That Indicate Direction  5.6 Decision Flow Process | 5<br>6<br>6<br>7<br>7<br>7<br>8<br>8<br>8 |
| 6        | 6.1 Required Conditions                                                                                                                                                                                                                                                                                                                                                                  | 10<br>10<br>10                            |
| 7        | The t-Distribution                                                                                                                                                                                                                                                                                                                                                                       | 11                                        |
| 8        | 8.1 When to Use                                                                                                                                                                                                                                                                                                                                                                          | 11<br>11<br>11                            |
| 9        | 1                                                                                                                                                                                                                                                                                                                                                                                        | 12<br>13<br>13<br>14                      |



## PSTAT 5A - Class Notes

| 9.2.2 Step-by-Step Examples                   | 14 |
|-----------------------------------------------|----|
| 10 Decision Guide: z-test vs. t-test          | 15 |
| 11 Quick Reference Guide                      | 16 |
| 11.1 Type I and Type II Errors                | 16 |
| 11.2 Key Reminders                            | 16 |
| 12 Z-test vs. Z-score: What's the Difference? | 16 |
| 12.1 Z-score (Standard Score)                 | 17 |
| 12.2 Z-test (Hypothesis Test)                 | 17 |
| 12.3 Visual Comparison                        | 17 |
| 12.4 Summary Comparison                       | 18 |



## 1 From Population to Inference

In statistics, we start with an entire **population** of size N and draw a smaller **sample** of size n at random. Our objective is to use what we *observe* in the sample to learn about what we *cannot observe* in the population.

- **Population** (N): every UCSB student's height, GPA, etc.
- Sample (n): a subset chosen independently and at random.
- Parameters: unknown numbers that characterise the population, e.g.  $\mu$  (mean),  $\sigma^2$  (variance),  $\sigma$  (standard deviation).
- Statistics: computable numbers from the sample, e.g.  $\bar{x}$ ,  $s^2$ , s, used as estimators.

Goal: Use statistics to make reliable statements about the parameters.



The workflow involves:

- 1. **Sampling**: Move from the population to a sample.
- 2. **Inference**: Use statistics to estimate parameters and quantify uncertainty.

#### 2 Point Estimates vs. Interval Estimates

**Definition 2.1** (Types of Statistical Estimates). Statistical procedures for unknown parameters fall into two categories:

- Point estimates: Return a single numerical value (one point on the number line)
- Interval estimates: Return a range of plausible values (confidence intervals)





|                     | Point Estimator                                               | Example Output       |
|---------------------|---------------------------------------------------------------|----------------------|
| Mean $\mu$          | $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$                    | 72.4 cm              |
| Variance $\sigma^2$ | $s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}$  | $81.0~\mathrm{cm}^2$ |
| Proportion $p$      | $\hat{p} = \frac{k}{n} \text{ (where } k = \text{successes)}$ | 0.37                 |

Table 1: Common point estimators and their typical outputs.

## 3 The Bridge: Confidence Intervals $\leftrightarrow$ Hypothesis Tests

Understanding the relationship between confidence intervals and hypothesis tests is crucial:

#### **Key Relationships**

- Point Estimate  $\bar{x}$ : Single best guess of  $\mu$
- Confidence Interval: Range of plausible values for  $\mu$
- Hypothesis Test: Asks if one specific value  $\mu_0$  is plausible at significance level  $\alpha$



## 4 Introduction to Hypothesis Testing

Hypothesis testing asks whether the data contradict a *default claim* about a population parameter. Rejecting that claim requires sufficiently strong sample evidence.



#### 4.1 Core Vocabulary

#### Hypothesis Testing Terminology

 $H_0$  (Null) "No effect" or status-quo value we assume true until proven otherwise

 $H_a$  (Alternative)

What we hope to support; specifies direction (>, <) or simply  $\neq$ 

**Test Statistic** 

Single number (e.g.,  $z,\,t,\,\chi^2$ ) quantifying distance between sample estimate and  $H_0$ 

p-value Probability, if  $H_0$  were true, of obtaining a test statistic at least this

extreme

 $\alpha$  (Significance)

Pre-chosen Type I error rate (commonly 0.05 or 0.01)

**Decision** Reject  $H_0$  if  $p \leq \alpha$  (or test statistic falls in critical region)

## 5 Understanding P-values

The p-value is one of the most important concepts in hypothesis testing, yet it's often misunderstood. Let's break it down clearly.

#### What is a P-value?

The p-value is the probability of observing data at least as favorable to the alternative hypothesis as our current data set, if the null hypothesis were true. In simpler terms: "If  $H_0$  is actually true, what's the chance of getting results this extreme or more extreme?"

## 5.1 P-value Properties and Interpretation

#### Key Properties of P-values

• Range:  $0 \le p \le 1$  (it's a probability)

• Small p-value: Strong evidence against  $H_0$ 

• Large p-value: Weak evidence against  $H_0$ 

• Decision rule: Reject  $H_0$  if  $p \leq \alpha$ 





Figure 1: Visual representation of p-values for two- and one-tailed tests.

#### 5.2 P-value Strength Guide



## 5.3 Common P-value Misconceptions

#### What P-values Are NOT!

#### WRONG Interpretations:

- X "The probability that  $H_0$  is true"
- X "The probability that  $H_a$  is true"
- X "The probability of making an error"
- X "The probability the results are due to chance"

#### **CORRECT Interpretation:**

•  $\checkmark$ " If  $H_0$  were true, the probability of observing data this extreme or more extreme"



#### 5.4 P-value Examples with Context

**Example 5.1** (Interpreting Different P-values). Consider testing whether a new teaching method improves test scores:

**Scenario 1:** p = 0.003

- Meaning: If the new method had no effect, there's only a 0.3% chance of seeing improvement this large or larger
- Conclusion: Very strong evidence that the method works
- **Decision:** Reject  $H_0$  (method has no effect)

**Scenario 2:** p = 0.08

- Meaning: If the new method had no effect, there's an 8% chance of seeing improvement this large or larger
- Conclusion: Moderate evidence, but not quite significant at  $\alpha = 0.05$
- **Decision:** Fail to reject  $H_0$  (borderline case)

**Scenario** 3: p = 0.35

- Meaning: If the new method had no effect, there's a 35% chance of seeing improvement this large or larger
- Conclusion: Weak evidence against the null hypothesis
- **Decision:** Fail to reject  $H_0$  (method may not be effective)

## 5.5 Determining the Direction: One-Tailed vs. Two-Tailed Tests

One of the most important decisions in hypothesis testing is determining the direction of your alternative hypothesis. This depends entirely on your research question.

#### Types of Hypothesis Tests

**Two-Tailed** Tests if parameter differs from  $\mu_0$  in either direction

**Left-Tailed** Tests if parameter is less than  $\mu_0$ 

**Right-Tailed** Tests if parameter is greater than  $\mu_0$ 

#### 5.5.1 How to Choose the Direction

The key is to read your research question carefully and ask: "What am I trying to prove or demonstrate?"



| Research Question      | Null Hypothe-    | Alternative        | Test Type    |
|------------------------|------------------|--------------------|--------------|
|                        | sis              |                    |              |
| "Is the mean different | $H_0: \mu = 20$  | $H_a: \mu \neq 20$ | Two-tailed   |
| from 20?"              |                  |                    |              |
| "Is the machine        | $H_0: \mu = 5.0$ | $H_a: \mu < 5.0$   | Left-tailed  |
| under-filling?"        |                  |                    |              |
| "Does the drug im-     | $H_0: \mu = 75$  | $H_a: \mu > 75$    | Right-tailed |
| prove scores?"         |                  |                    |              |
| "Is the new method     | $H_0: \mu = 10$  | $H_a: \mu > 10$    | Right-tailed |
| better?"               |                  |                    |              |

#### 5.5.2 Visual Guide to Critical Regions





**Left-Tailed:**  $H_a: \mu < \mu_0$ 



**Right-Tailed:**  $H_a: \mu > \mu_0$ 



#### 5.5.3 Common Keywords That Indicate Direction

## Left-Tailed $H_a: \mu < \mu_0$ less than

decreased under-filling worse than below

## Two-Tailed

 $H_a: \mu \neq \mu_0$ different from changed not equal to affects (either way)

#### Right-Tailed

 $H_a: \mu > \mu_0$  greater than increased improved better than exceeds above



#### **Decision Strategy**

#### Ask yourself:

- 1. What am I trying to demonstrate or prove?
- 2. Am I looking for a change in a specific direction, or any change at all?
- 3. Does the context suggest I care about "worse" or "better" (one direction) or just "different" (either direction)?

**Remember:** The alternative hypothesis  $H_a$  represents what you're trying to provide evidence for!

#### 5.6 Decision Flow Process



**Interpretation:** If the sample evidence would be rare under  $H_0$  (small p-value), we deem the null implausible and reject it. Otherwise, we "fail to reject," acknowledging that the data are compatible with the status-quo claim.



#### 6 Central Limit Theorem and Conditions

When we draw a random sample from a population, the raw data need not be normally distributed. The **Central Limit Theorem (CLT)** tells us that the sampling distribution of the sample mean  $\bar{X}$  becomes approximately normal as sample size grows.

#### Central Limit Theorem (CLT)

When we collect a sufficiently large sample of n independent observations from a population with mean  $\mu$  and standard deviation  $\sigma$ , the sampling distribution of  $\bar{x}$  will be approximately normal with:

$$Mean = \mu \tag{1}$$

Standard Error (SE) = 
$$\frac{\sigma}{\sqrt{n}}$$
 (2)

#### 6.1 Required Conditions

- 1. **Independence**: Sample observations must be independent. Most commonly satisfied when the sample is a simple random sample from the population.
- 2. **Normality**: When sample is small, we require that observations come from a normally distributed population. This condition can be relaxed for larger sample sizes.

#### Rules of Thumb: Normality Check

- n < 30: If sample size is less than 30 and there are no clear outliers, assume data come from a nearly normal distribution.
- $n \geq 30$ : If sample size is at least 30 and there are no particularly extreme outliers, assume the sampling distribution of  $\bar{x}$  is nearly normal, even if the underlying distribution is not.



#### 6.2 The Problem: Unknown $\sigma$

The standard error depends on the population standard deviation  $\sigma$ , which we rarely know. In practice, we substitute the sample standard deviation s:

$$SE(\bar{X}) \approx \frac{s}{\sqrt{n}}$$

This introduces additional uncertainty, especially when n is small. The remedy is to use the t-distribution instead of the normal distribution.



## 7 The t-Distribution

- A t-distribution is centered at 0 and controlled by degrees of freedom (df)
- For a sample mean based on n observations, we set df = n 1
- As df  $\to \infty$ , the t-distribution approaches the standard normal
- For small df, it has visibly thicker tails



## 8 The One-Sample t-Test

#### 8.1 When to Use

- Population standard deviation  $\sigma$  is unknown and sample sd s is used
- Sample is random; population is reasonably normal or  $n \geq 30$  (CLT applies)

#### 8.2 Test Statistic

$$t = \frac{\bar{X} - \mu_0}{s/\sqrt{n}} \quad \xrightarrow[H_0]{} \quad t_{n-1}$$

**Example 8.1** (Protein Bar Analysis). A nutritionist claims protein bars contain 20g of protein on average. Ten bars are analyzed with results:

Test the claim at  $\alpha = 0.05$ .

#### Solution 8.1.1. Step 1: State Hypotheses

$$H_0: \mu = 20 \tag{3}$$

$$H_a: \mu \neq 20 \quad (two\text{-tailed test})$$
 (4)

#### Step 2: Check Conditions

• Independence: ✓ (random sample)



- Normality:  $\checkmark$  (n = 10 < 30, no obvious outliers)
- Standard deviation:  $\checkmark$  unknown  $\rightarrow$  t-test

#### Step 3: Calculate Sample Statistics

$$\bar{x} = \frac{19.1 + 18.7 + \dots + 19.5}{10} = 19.74 \tag{5}$$

$$s = 0.63 \tag{6}$$

$$n = 10 \tag{7}$$

#### Step 4: Compute Test Statistic

$$t = \frac{19.74 - 20}{0.63/\sqrt{10}} = \frac{-0.26}{0.199} \approx -0.80$$

#### Step 5: Find Critical Values and p-value

- Degrees of freedom: df = n 1 = 9
- Critical values:  $t_{0.025,9} = \pm 2.262$
- Critical region: |t| > 2.262
- p-value:  $p = 2P(T_9 > |-0.80|) \approx 0.44$  (optional)

 $t_9$  Distribution with Critical Regions ( $\alpha = 0.05$ )



Step 6: Make Decision Since |t| = 0.80 < 2.262 and p = 0.44 > 0.05, we fail to reject  $H_0$ .

**Conclusion:** The data do not provide significant evidence that the true mean protein content differs from 20g at the  $\alpha = 0.05$  level.

## 9 The One-Sample z-Test

When the population standard deviation  $\sigma$  is known (or n is large enough that  $s \approx \sigma$ ), we use the standard normal distribution.



#### 9.1 Test Statistic

$$z = \frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}} \quad \xrightarrow[H_0]{} \quad N(0, 1)$$

**Example 9.1** (Industrial Process Control). A filling machine is designed to fill bags with 5.0 kg of fertilizer. Historical data shows  $\sigma = 0.20$  kg. A sample of n = 50 bags has mean fill 4.94 kg. At  $\alpha = 0.05$ , test if the process is under-filling.

#### Solution 9.1.1. Step 1: State Hypotheses

$$H_0: \mu = 5.0 \quad (process is filling correctly)$$
 (8)

$$H_a: \mu < 5.0 \quad (process is under-filling)$$
 (9)

#### Step 2: Compute Test Statistic

$$z = \frac{4.94 - 5.0}{0.20/\sqrt{50}} = \frac{-0.06}{0.0283} \approx -2.12$$

#### Step 3: Find Critical Value and p-value

• One-tailed test:  $z_{0.05} = -1.645$ 

• p-value:  $P(Z < -2.12) \approx 0.017$  (optional)

Standard Normal Distribution - Left-Tailed Test ( $\alpha = 0.05$ )



Step 4: Decision Since z = -2.12 < -1.645 and p = 0.017 < 0.05, we reject  $H_0$ . Conclusion: There is significant evidence that the machine is under-filling bags.

## 9.2 Using the Standard Normal (Z) Table

Understanding how to read the z-table is crucial for finding critical values and p-values in hypothesis testing.

#### How to Read the Z-Table

The standard normal table gives you the area to the **left** of a z-value under the standard normal curve.

- Table Value =  $P(Z \le z)$  = Area to the left of z
- Rows: First two digits of z-value (e.g., -2.1, 1.6)
- Columns: Third decimal place (e.g., 0.02, 0.05)



#### 9.2.1 Sample Z-Table (Partial)

#### Standard Normal Table (Left-tail areas)

| Z   | 0.00   | 0.01   | 0.02   | 0.03   | 0.04   | 0.05                   |
|-----|--------|--------|--------|--------|--------|------------------------|
| 2.2 | 0.0139 | 0.0136 | 0.0132 | 0.0129 | 0.0125 | 0.0122                 |
| 1   |        |        | (.017) |        |        |                        |
| 2.0 | 0.0228 | 0.0222 | 0.0217 | 0.0212 | 0.0207 | 0.0202                 |
| 1.7 | 0.0446 | 0.0436 | 0.0427 | 0.0418 | 0.0409 | $\boxed{0.040}$        |
| 1.6 | 0.0548 | 0.0537 | 0.0526 | 0.0516 | 0.0505 | 05 = -1.645<br>0.95 ue |

#### 9.2.2 Step-by-Step Examples

#### Example 1: Finding p-value for z

Goal: Find P(Z < -2.12) Steps:

1. Look up row for z = -2.1

2. Look up column for 0.02 (since -2.12 = -2.1 + (-0.02))

3. Find intersection:  $P(Z < -2.12) = 0.0170 \approx 0.017$ 

This matches our p-value from the fertilizer example!

#### Example 2: Finding critical value for $\alpha$

Goal: Find z such that P(Z < z) = 0.05Steps:

1. Look through the table body for value closest to 0.0500

2. Find 0.0495 at row z = -1.6, column 0.05

3. Critical value:  $z_{0.05} = -1.645$ 

This is our critical value from the fertilizer example!

#### Key Points for Using Z-Tables

• Always remember: Table gives area to the *left* 

• For right-tail areas: Use P(Z > z) = 1 - P(Z < z)

• For two-tail tests: Find area in one tail, then double it

• Critical values: Look up the  $\alpha$  area in the table body, find corresponding z

• P-values: Look up your calculated z-statistic, read the probability



## 10 Decision Guide: z-test vs. t-test





## 11 Quick Reference Guide

| tatistical Test Summary |                                                   |              |                            |  |
|-------------------------|---------------------------------------------------|--------------|----------------------------|--|
| Test Type               | Test Statistic                                    | Distribution | When to Use                |  |
| One-sample $z$          | $z = \frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}}$   | N(0, 1)      | $\sigma$ known             |  |
| One-sample $t$          | $t = \frac{\bar{X} - \mu_0}{s/\sqrt{n}}$          | $t_{n-1}$    | $\sigma$ unknown           |  |
| One proportion          | $z = \frac{\hat{p} - p_0}{\sqrt{p_0(1 - p_0)/n}}$ | N(0,1)       | $np \ge 10, n(1-p) \ge 10$ |  |

#### 11.1 Type I and Type II Errors

| 2*Decision           | Reality                 |                          |  |
|----------------------|-------------------------|--------------------------|--|
|                      | $H_0$ True              | $H_0$ False              |  |
| Reject $H_0$         | Type I Error $(\alpha)$ | Correct Decision (Power) |  |
| Fail to Reject $H_0$ | Correct Decision        | Type II Error $(\beta)$  |  |

- Type I Error: Rejecting a true null hypothesis (false positive)
- Type II Error: Failing to reject a false null hypothesis (false negative)
- Power: Probability of correctly rejecting a false null hypothesis  $(1 \beta)$

#### 11.2 Key Reminders

#### Important Notes

- 1. Always check conditions before performing any test
- 2. A non-significant result does not prove  $H_0$  is true
- 3. Statistical significance does not imply practical significance
- 4. The p-value is NOT the probability that  $H_0$  is true
- 5. Always interpret results in the context of the problem

## 12 Z-test vs. Z-score: What's the Difference?

#### Common Student Question

Are a z-test and a z-score the same?

No, but they are closely related.



### 12.1 Z-score (Standard Score)

#### **Z-score** Definition

A **z-score** (also called a *standard score*) tells you how many standard deviations a data point is from the population mean. It standardizes individual data values.

$$z = \frac{x - \mu}{\sigma}$$

#### Components:

- x = individual data point
- $\mu = \text{population mean}$
- $\sigma$  = population standard deviation

### 12.2 Z-test (Hypothesis Test)

#### **Z-test Definition**

A **z-test** is a hypothesis test used to assess whether a sample mean differs significantly from a hypothesized population mean when the population standard deviation is known.

$$z = \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}}$$

#### Components:

- $\bar{x} = \text{sample mean}$
- $\mu_0$  = hypothesized population mean (from  $H_0$ )
- $\sigma$  = population standard deviation
- n = sample size

## 12.3 Visual Comparison

#### **Z-Score**

Purpose: Standardize one data point

Answers: "How unusual is this single value?"

Example: Student's test score compared to class average

Both use standardization

#### **Z-Test**

**Purpose:** Test hypothesis about sample mean

Answers: "Is this sample mean significantly different?"

**Example:** Is machine filling bags correctly?



## 12.4 Summary Comparison

## Side-by-Side Comparison

| Aspect   | Z-score                                                                | Z-test                                                       |  |
|----------|------------------------------------------------------------------------|--------------------------------------------------------------|--|
| Purpose  | Standardize a single data point                                        | Test sample mean vs. population mean                         |  |
| Input    | One value $x$                                                          | Sample: $\bar{x}$ , $n$ ; Population: $\mu_0$ , $\sigma$     |  |
| Output   | Standard score (number)                                                | Test statistic $\rightarrow p$ -value $\rightarrow$ decision |  |
| Use Case | Compare individual to population                                       | Hypothesis testing on sample means                           |  |
| Example  | "John scored 85 on a test with $\mu=75,\sigma=10.$ His z-score is 1.0" | "Sample of 50 bags has $\bar{x}=4.94$ kg. Is $\mu<5.0$ kg?"  |  |

#### Key Takeaway

- ullet **Z-score**: Describes how far *one data point* is from the mean
- **Z-test**: Uses a z-score-like calculation to test whether a *sample mean* is significantly different from a hypothesized value
- Both involve standardization, but serve different statistical purposes!