
Lab 6 Solutions: Basic
Hypothesis Testing & Simple

Regression
PSTAT 5A - Summer Session A 2025

Instructor: Narjes Mathlouthi

2025-07-29

Table of contents

What You’ll Learn Today . . . . . . . . . . . . . . . . 2

Getting Started 2

Task 1: One-Sample T-Test 4
What is a One-Sample T-Test? . . . . . . . . . . . . . 4

Scenario . . . . . . . . . . . . . . . . . . . . . . . 4
Step 1: Explore the Data . . . . . . . . . . . . . 5
Step 2: Set Up Your Hypotheses . . . . . . . . . 5
Step 3: Calculate the Test Statistic . . . . . . . . 6
Step 4: Find the P-Value . . . . . . . . . . . . . 7
Step 5: Make Your Decision . . . . . . . . . . . . 9
Step 6: Verify with Python . . . . . . . . . . . . 10
Step 7: Visualize Your Results . . . . . . . . . . 11
� Reflection Questions - SOLUTIONS . . . . . . 12

Task 2: Simple Linear Regression 13
Scenario . . . . . . . . . . . . . . . . . . . . . . . 14
Step 1: Explore the Data . . . . . . . . . . . . . 15
Step 2: Calculate and Interpret Correlation . . . 16
Step 3: Fit the Linear Regression Model . . . . . 18
Step 4: Test Statistical Significance . . . . . . . . 19

1



Step 5: Make Predictions . . . . . . . . . . . . . 20
Step 6: Check Model Assumptions . . . . . . . . 22
Step 7: Visualize Your Results . . . . . . . . . . 23
Step 8: Interpret Your Model . . . . . . . . . . . 25
� Reflection Questions - SOLUTIONS . . . . . . 27

� Lab Summary . . . . . . . . . . . . . . . . . . . . . . 29
What You Accomplished . . . . . . . . . . . . . . 29
Key Skills Developed . . . . . . . . . . . . . . . . 29

� Total Lab Time: 50 minutes

Welcome to Lab 6 Solutions! This lab focuses on two funda-
mental areas of statistical analysis that you’ll use throughout
your data science journey: hypothesis testing and simple
linear regression. These tools allow us to make data-driven
decisions and understand relationships between variables.

What You’ll Learn Today

By the end of this lab, you’ll be able to:

• Conduct hypothesis tests to determine if sample data
provides evidence against a claim

• Model relationships between variables using simple lin-
ear regression

• Make predictions based on data patterns
• Interpret statistical results in plain English for real-

world applications

Getting Started

� Estimated time: 5 minutes

Setup

Navigate to our class Jupyterhub Instance. Create a new
notebook and rename it “lab6” (for detailed instructions
view lab1).

2

https://pstat5a.lsit.ucsb.edu/


First, let’s load our tools! Copy the below code to get
started! We’ll be using the following core libraries:

• NumPy: Fundamental package for fast array-
based numerical computing.

• Matplotlib (pyplot): Primary library for creating
static 2D plots and figures.

• SciPy (stats): Collection of scientific algorithms,
including probability distributions and statistical
tests.

• Pandas: High-performance data structures
(DataFrame) and tools for data wrangling and
analysis.

• Statsmodels: Econometric and statistical model-
ing for regression analysis, time series, and more.

• Seaborn:Seaborn is a Python data visualization li-
brary based on matplotlib. It provides a high-level
interface for drawing attractive and informative sta-
tistical graphics.

# Install any missing packages (will skip those already installed)
#!%pip install --quiet numpy matplotlib scipy pandas statsmodels seaborn

# Load our tools (libraries)
import numpy as np
import matplotlib.pyplot as plt
from scipy import stats
import pandas as pd
import statsmodels.api as sm
import seaborn as sns

# Make our graphs look nice
plt.style.use('seaborn-v0_8-whitegrid')
sns.set_palette("husl")

3

https://numpy.org/doc/
https://matplotlib.org/stable/contents.html
https://docs.scipy.org/doc/scipy/reference/stats.html
https://pandas.pydata.org/docs/
https://www.statsmodels.org/stable/index.html
https://seaborn.pydata.org/


# Set random seed for reproducible results
np.random.seed(42)

print("� All tools loaded successfully!")

� All tools loaded successfully!

Task 1: One-Sample T-Test

� Estimated time: 20 minutes

What is a One-Sample T-Test?

A one-sample t-test helps us determine whether a sample
mean is significantly different from a claimed or hypothesized
population mean. It’s one of the most common statistical tests
you’ll encounter.

Real-world example: A coffee shop advertises that their
espresso shots contain an average of 75mg of caffeine. As a
health-conscious consumer (or maybe a caffeine researcher!),
you want to test this claim. You collect a sample of espresso
shots and measure their caffeine content.

The Question: Is the actual average caffeine content different
from what the coffee shop claims?

Scenario

A coffee shop claims their average espresso shot contains 75
mg of caffeine. You suspect it’s actually higher. You test 20
shots and want to test at 𝛼 = 0.05 significance level.

Your Goal: Determine if there’s sufficient evidence that the
actual caffeine content exceeds the coffee shop’s claim.

4



Step 1: Explore the Data

# Generate caffeine data for our analysis
np.random.seed(123)
caffeine_data = np.random.normal(78, 8, 20) # Sample data: n=20 espresso shots

print("� Coffee Shop Caffeine Analysis")
print("=" * 40)
print(f"� Sample size: {len(caffeine_data)}")
print(f"� Sample mean: {np.mean(caffeine_data):.2f} mg")
print(f"� Sample std dev: {np.std(caffeine_data, ddof=1):.2f} mg")
print(f"� Coffee shop's claim: 75 mg")

# Let's look at our raw data
print(f"\n� First 10 caffeine measurements:")
print([f"{x:.1f}" for x in caffeine_data[:10]])

� Coffee Shop Caffeine Analysis
========================================
� Sample size: 20
� Sample mean: 78.92 mg
� Sample std dev: 10.06 mg
� Coffee shop's claim: 75 mg

� First 10 caffeine measurements:
['69.3', '86.0', '80.3', '65.9', '73.4', '91.2', '58.6', '74.6', '88.1', '71.1']

Step 2: Set Up Your Hypotheses

Think about this carefully: - What does the coffee shop
claim? (This becomes your null hypothesis) - What do you
suspect? (This becomes your alternative hypothesis) - Are you
testing if the caffeine content is different, higher, or lower?

print("� STEP 1: Setting Up Hypotheses")
print("=" * 35)

# SOLUTION: Complete these hypotheses

5



print("$H_0$ (Null Hypothesis): $\\mu$ = 75 mg") # Coffee shop's claim
print("$H_1$ (Alternative Hypothesis): $\\mu$ > 75 mg") # We suspect it's higher

# SOLUTION: What type of test is this?
print("Test type: RIGHT-tailed test") # Testing if mean is greater than 75

print("\n� Explanation:")
print("• $H_0$ represents the coffee shop's claim (status quo)")
print("• $H_1$ represents what we suspect is actually true")
print("• We use $\\alpha$ = 0.05 as our significance level")

� STEP 1: Setting Up Hypotheses
===================================
$H_0$ (Null Hypothesis): $\mu$ = 75 mg
$H_1$ (Alternative Hypothesis): $\mu$ > 75 mg
Test type: RIGHT-tailed test

� Explanation:
• $H_0$ represents the coffee shop's claim (status quo)
• $H_1$ represents what we suspect is actually true
• We use $\alpha$ = 0.05 as our significance level

� Answer Key: - 𝐻0: 𝜇 = 75 mg (coffee shop’s claim) - 𝐻1:
𝜇 > 75 mg (we suspect it’s higher) - Right-tailed test (testing
if mean is greater than 75)

Step 3: Calculate the Test Statistic

The t-statistic formula is: 𝑡 = �̄�−𝜇0
𝑠/√𝑛

print("� STEP 2: Calculating Test Statistic")
print("=" * 38)

# Calculate the components
sample_mean = np.mean(caffeine_data)
sample_std = np.std(caffeine_data, ddof=1) # ddof=1 for sample std dev
n = len(caffeine_data)
claimed_mean = 75

6



print(f"Sample mean ($\\bar{{x}}$): {sample_mean:.3f} mg")
print(f"Sample std dev (s): {sample_std:.3f} mg")
print(f"Sample size (n): {n}")
print(f"Claimed mean ($\\mu_0$): {claimed_mean} mg")

# SOLUTION: Calculate the t-statistic using the formula above
t_statistic = (sample_mean - claimed_mean) / (sample_std / np.sqrt(n))

degrees_freedom = n - 1

print(f"\n� Formula: $t = \\frac{{\\bar{{x}} - \\mu_0}}{{s / \\sqrt{{n}}}}$")
print(f"� Calculation: t = ({sample_mean:.3f} - {claimed_mean}) / ({sample_std:.3f} / √{n})")
print(f"� t-statistic: {t_statistic:.3f}")
print(f"� Degrees of freedom: {degrees_freedom}")

� STEP 2: Calculating Test Statistic
======================================
Sample mean ($\bar{x}$): 78.915 mg
Sample std dev (s): 10.060 mg
Sample size (n): 20
Claimed mean ($\mu_0$): 75 mg

� Formula: $t = \frac{\bar{x} - \mu_0}{s / \sqrt{n}}$
� Calculation: t = (78.915 - 75) / (10.060 / √20)
� t-statistic: 1.741
� Degrees of freedom: 19

Step 4: Find the P-Value

For a right-tailed test, the p-value is the probability of get-
ting a t-statistic as extreme or more extreme than what we
observed.

What exactly is a p‑value?

Loosely speaking, the p‑value answers the question:

“If the null hypothesis were true, how surpris-
ing would my sample be?”

7



Formally, it is the probability, calculated under the as-
sumption that the null hypothesis is correct; of obtaining
a test statistic as extreme or more extreme than the
one observed.

• Small p‑value (e.g., < 0.05) → data are rare
under 𝐻0 → strong evidence against 𝐻0.

• Large p‑value → data are plausible under 𝐻0 →
little or no evidence against 𝐻0.

Important: A p‑value does not give the probability that
the null hypothesis is true; it quantifies how incompatible
your data are with 𝐻0.

print("� STEP 3: Finding the P-Value")
print("=" * 32)

# SOLUTION: Calculate p-value for right-tailed test
# For right-tailed test, p-value = 1 - stats.t.cdf(t_statistic, df)
p_value = 1 - stats.t.cdf(t_statistic, degrees_freedom)

print(f"� P-value calculation:")
print(f" P(t > {t_statistic:.3f}) = {p_value:.4f}")
print(f"\n� Interpretation:")
print(f" If the coffee shop's claim is true ($\\mu$ = 75),")
print(f" there's a {p_value:.1%} chance of getting a sample")
print(f" mean as high or higher than {sample_mean:.2f} mg")

� STEP 3: Finding the P-Value
================================
� P-value calculation:

P(t > 1.741) = 0.0490

� Interpretation:
If the coffee shop's claim is true ($\mu$ = 75),
there's a 4.9% chance of getting a sample
mean as high or higher than 78.92 mg

8



Step 5: Make Your Decision

Compare your p-value to 𝛼 = 0.05 and make a statistical deci-
sion.

print("� STEP 4: Making the Decision")
print("=" * 31)

alpha = 0.05
print(f"� Significance level ($\\alpha$): {alpha}")
print(f"� P-value: {p_value:.4f}")
print(f"� Decision rule: Reject $H_0$ if p-value < $\\alpha$")

print(f"\n� Comparison:")
if p_value < alpha:

print(f" {p_value:.4f} < {alpha} �")
print(f" Decision: **REJECT $H_0$**")
print(f" Conclusion: There IS sufficient evidence that")
print(f" the average caffeine content > 75 mg")
print(f" � The coffee shop's claim appears to be FALSE")

else:
print(f" {p_value:.4f} � {alpha} �")
print(f" Decision: **FAIL TO REJECT $H_0$**")
print(f" Conclusion: There is NOT sufficient evidence that")
print(f" the average caffeine content > 75 mg")
print(f" � We cannot conclude the coffee shop's claim is false")

# SOLUTION: Write conclusion in plain English
print(f"\n� Conclusion in plain English:")
print(f" Based on our sample of 20 espresso shots, we found")
print(f" strong statistical evidence that the coffee shop's")
print(f" claim of 75mg caffeine is too low. The actual average")
print(f" appears to be significantly higher than advertised.")

� STEP 4: Making the Decision
===============================
� Significance level ($\alpha$): 0.05
� P-value: 0.0490
� Decision rule: Reject $H_0$ if p-value < $\alpha$

9



� Comparison:
0.0490 < 0.05 �
Decision: **REJECT $H_0$**
Conclusion: There IS sufficient evidence that

the average caffeine content > 75 mg
� The coffee shop's claim appears to be FALSE

� Conclusion in plain English:
Based on our sample of 20 espresso shots, we found
strong statistical evidence that the coffee shop's
claim of 75mg caffeine is too low. The actual average
appears to be significantly higher than advertised.

Step 6: Verify with Python

Let’s double-check our work using Python’s built-in statistical
functions.

print("� VERIFICATION using scipy.stats")
print("=" * 35)

# Use scipy's one-sample t-test function
t_stat_scipy, p_val_scipy = stats.ttest_1samp(caffeine_data, 75, alternative='greater')

print(f"� Your calculations:")
print(f" t-statistic: {t_statistic:.3f}")
print(f" p-value: {p_value:.4f}")

print(f"\n� Python's calculations:")
print(f" t-statistic: {t_stat_scipy:.3f}")
print(f" p-value: {p_val_scipy:.4f}")

print(f"\n� Match? {abs(t_statistic - t_stat_scipy) < 0.001 and abs(p_value - p_val_scipy) < 0.001}")

� VERIFICATION using scipy.stats
===================================
� Your calculations:

t-statistic: 1.741
p-value: 0.0490

10



� Python's calculations:
t-statistic: 1.741
p-value: 0.0490

� Match? True

Step 7: Visualize Your Results

# Create visualizations to understand our test
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(16, 6))

# Plot 1: Sample data histogram with means
ax1.hist(caffeine_data, bins=8, density=True, alpha=0.7, color='lightblue',

edgecolor='black', label='Sample Data')
ax1.axvline(sample_mean, color='red', linestyle='-', linewidth=3,

label=f'Sample Mean = {sample_mean:.1f}mg')
ax1.axvline(claimed_mean, color='orange', linestyle='--', linewidth=3,

label=f'Claimed Mean = {claimed_mean}mg')
ax1.set_xlabel('Caffeine Content (mg)', fontsize=12)
ax1.set_ylabel('Density', fontsize=12)
ax1.set_title('� Sample vs Claimed Caffeine Content', fontsize=14, fontweight='bold')
ax1.legend(fontsize=11)
ax1.grid(True, alpha=0.3)

# Plot 2: t-distribution with test statistic and p-value
x = np.linspace(-4, 4, 1000)
y = stats.t.pdf(x, degrees_freedom)
ax2.plot(x, y, 'b-', linewidth=2, label=f't-distribution (df={degrees_freedom})')
ax2.fill_between(x, y, alpha=0.3, color='lightblue')

# Shade the rejection region (right tail)
x_reject = x[x >= t_statistic]
y_reject = stats.t.pdf(x_reject, degrees_freedom)
ax2.fill_between(x_reject, y_reject, alpha=0.7, color='red',

label=f'p-value = {p_value:.4f}')

ax2.axvline(t_statistic, color='red', linestyle='-', linewidth=3,
label=f'Our t-statistic = {t_statistic:.3f}')

11



ax2.set_xlabel('t-value', fontsize=12)
ax2.set_ylabel('Density', fontsize=12)
ax2.set_title('� T-Distribution with Test Statistic', fontsize=14, fontweight='bold')
ax2.legend(fontsize=11)
ax2.grid(True, alpha=0.3)

plt.tight_layout()
plt.show()

� Reflection Questions - SOLUTIONS

Answer these questions to check your understanding:

1. Hypotheses: What were your null and alternative hy-
potheses? Why did you choose a right-tailed test?

• Answer: 𝐻0: 𝜇 = 75 mg, 𝐻1: 𝜇 > 75 mg. We chose
a right-tailed test because we specifically suspected
the caffeine content was higher than claimed, not
just different.

2. Test Choice: Why did you use a t-test instead of a z-test
for this problem?

• Answer: We used a t-test because: (1) small sam-
ple size (n=20 < 30), (2) population standard devi-
ation unknown, (3) assuming approximately normal
distribution.

3. Results: What was your t-statistic and p-value? What
do these numbers mean?

12



• Answer: t � 1.84, p � 0.041. The t-statistic tells us
how many standard errors our sample mean is above
the claimed mean. The p-value tells us there’s only
a 4.1% chance of seeing this result if the true mean
were 75mg.

4. Decision: What was your final conclusion at 𝛼 = 0.05?
Do you reject or fail to reject the null hypothesis?

• Answer: We REJECT 𝐻0 because p-value (0.041)
< � (0.05). There’s sufficient evidence that the actual
caffeine content exceeds 75mg.

5. Real-World Impact: If you were advising the coffee
shop, what would you tell them based on your analysis?

• Answer: “Your espresso shots appear to contain sig-
nificantly more caffeine than advertised. You should
either update your labeling to reflect the actual con-
tent or adjust your brewing process to match your
claim.”

Task 2: Simple Linear Regression

� Estimated time: 25 minutes

What is Simple Linear Regression?

Simple linear regression helps us understand and model
the relationship between two continuous variables. Un-
like hypothesis testing (which answers yes/no questions),
regression helps us predict outcomes and quantify rela-
tionships.
Real-world example: As a student, you’ve probably
wondered: “If I study more hours, how much will my exam
score improve?” Linear regression can help answer this
question by finding the relationship between study time
and exam performance.

13



The Question: Can we predict exam scores based on
hours studied? And if so, how much does each additional
hour of studying improve your expected score?

At a glance — what you’ll do

1. Explore & visualize the data
2. Measure correlation (r) and 𝑅2

3. Fit the regression line ̂𝑦 = 𝛽0 + 𝛽1𝑥
4. Test if the slope is significant
5. Predict new values & quantify error
6. Check model assumptions
7. Visualize diagnostics
8. Write a plain‑English conclusion

Key Concepts:

• Correlation: How strongly two variables move to-
gether (-1 to +1)

• Slope: How much 𝑌 changes when X increases by
1 unit

• Intercept: The predicted value of 𝑌 when 𝑋 = 0
• 𝑅2: What percentage of the variation in 𝑌 is ex-

plained by 𝑋

Important

Remember: Correlation does not imply causation! Just
because two variables are related doesn’t mean one causes
the other.

Scenario

You want to investigate the relationship between study hours
and exam performance. You collect data from 50 students
about their weekly study hours and corresponding exam
scores.

Your Goal: Create a statistical model to predict exam scores

14



based on study hours and determine how much each additional
hour of studying helps.

Step 1: Explore the Data

# Generate realistic study data
np.random.seed(101)
n_students = 50

# Study hours (predictor variable X)
study_hours = np.random.uniform(1, 20, n_students)

# Exam scores with linear relationship plus noise
# True relationship: score = 65 + 2*hours + noise
true_intercept = 65
true_slope = 2
noise = np.random.normal(0, 8, n_students)
exam_scores = true_intercept + true_slope * study_hours + noise

# Create DataFrame for easier handling
study_data = pd.DataFrame({

'hours_studied': study_hours,
'exam_score': exam_scores

})

print("� Study Hours vs Exam Scores Analysis")
print("=" * 45)
print(f"� Sample size: {len(study_data)} students")
print(f"� Study hours range: {study_hours.min():.1f} to {study_hours.max():.1f} hours")
print(f"� Exam scores range: {exam_scores.min():.1f} to {exam_scores.max():.1f} points")

print(f"\n� First 10 students:")
print(study_data.head(10).round(2))

� Study Hours vs Exam Scores Analysis
=============================================
� Sample size: 50 students
� Study hours range: 1.5 to 19.9 hours
� Exam scores range: 60.1 to 111.6 points

15



� First 10 students:
hours_studied exam_score

0 10.81 88.53
1 11.84 104.66
2 1.54 60.14
3 4.26 75.09
4 14.02 83.95
5 16.84 98.69
6 6.83 86.87
7 17.98 99.70
8 14.71 94.17
9 4.61 79.42

� Quick Questions:

• Do you see any obvious pattern in the data?

– Answer: Yes! As study hours increase, exam scores
tend to increase too.

• Which variable is the predictor (X) and which is the re-
sponse (Y)?

– Answer: Study hours is the predictor (X), exam
scores is the response (Y).

Step 2: Calculate and Interpret Correlation

Correlation measures how strongly two variables move
together.

print("� STEP 1: Measuring the Relationship")
print("=" * 40)

# SOLUTION: Calculate the correlation coefficient
correlation = np.corrcoef(study_hours, exam_scores)[0, 1]

print(f"� Correlation coefficient: r = {correlation:.3f}")

# SOLUTION: Interpret the correlation strength

16



print(f"\n� Interpretation:")
if abs(correlation) < 0.3:

strength = "weak"
elif abs(correlation) < 0.7:

strength = "moderate"
else:

strength = "strong"

direction = "positive" if correlation > 0 else "negative"
print(f" This indicates a {strength} {direction} relationship")
print(f" between study hours and exam scores.")

print(f"\n� What this means:")
print(f" • r = {correlation:.3f} means the variables are strongly related")
print(f" • As study hours increase, exam scores tend to increase")
print(f" • About {correlation**2:.1%} of the variation in scores")
print(f" can be explained by study hours alone")

� STEP 1: Measuring the Relationship
========================================
� Correlation coefficient: r = 0.753

� Interpretation:
This indicates a strong positive relationship
between study hours and exam scores.

� What this means:
• r = 0.753 means the variables are strongly related
• As study hours increase, exam scores tend to increase
• About 56.8% of the variation in scores
can be explained by study hours alone

� Check Your Understanding:

• What does r = 0.8 vs r = 0.3 tell you?

– Answer: r = 0.8 indicates a strong relationship
(variables move together closely), while r = 0.3 indi-
cates a weak relationship (more scattered, less pre-
dictable).

17



• If r = -0.9, what would that mean?

– Answer: Very strong negative relationship - as one
variable increases, the other decreases in a highly
predictable way.

Step 3: Fit the Linear Regression Model

Now we’ll find the “line of best fit” through our data points.

print("� STEP 2: Fitting the Regression Line")
print("=" * 42)

# Set up the regression (add constant for intercept)
X = sm.add_constant(study_hours) # Add intercept term

# SOLUTION: Fit the OLS (Ordinary Least Squares) model
model = sm.OLS(exam_scores, X).fit()

print(f"� Regression Equation:")
print(f" Exam Score = $\\beta_0$ + $\\beta_1$ × Hours Studied")
print(f" Exam Score = {model.params[0]:.2f} + {model.params[1]:.2f} × Hours")

print(f"\n� Model Coefficients:")
print(f" Intercept ($\\beta_0$): {model.params[0]:.3f}")
print(f" Slope ($\\beta_1$): {model.params[1]:.3f}")
print(f" R-squared ($R^2$): {model.rsquared:.3f}")

# SOLUTION: Complete these interpretations
print(f"\n� What These Numbers Mean:")
print(f" � Intercept ({model.params[0]:.1f}): Expected score with 0 hours of study")
print(f" � Slope ({model.params[1]:.2f}): Each additional hour increases score by {model.params[1]:.2f} points")
print(f" � $R^2$ ({model.rsquared:.3f}): Study hours explain {model.rsquared:.1%} of score variation")

� STEP 2: Fitting the Regression Line
==========================================
� Regression Equation:

Exam Score = $\beta_0$ + $\beta_1$ × Hours Studied
Exam Score = 69.94 + 1.67 × Hours

18



� Model Coefficients:
Intercept ($\beta_0$): 69.936
Slope ($\beta_1$): 1.670
R-squared ($R^2$): 0.568

� What These Numbers Mean:
� Intercept (69.9): Expected score with 0 hours of study
� Slope (1.67): Each additional hour increases score by 1.67 points
� $R^2$ (0.568): Study hours explain 56.8% of score variation

Step 4: Test Statistical Significance

Is the relationship we found statistically significant, or could it
be due to chance?

print("� STEP 3: Testing Statistical Significance")
print("=" * 46)

# Check if the slope is significantly different from zero
slope_pvalue = model.pvalues[1] # p-value for the slope
alpha = 0.05

print(f"� Hypothesis Test for Slope:")
print(f" $H_0$: $\\beta_1$ = 0 (no relationship)")
print(f" $H_1$: $\\beta_1$ � 0 (there is a relationship)")
print(f" $\\alpha$ = {alpha}")

print(f"\n� Test Results:")
print(f" Slope p-value: {slope_pvalue:.6f}")

# SOLUTION: Make the decision
if slope_pvalue < alpha:

print(f" Decision: REJECT $H_0$")
print(f" Conclusion: The relationship IS statistically significant")
significance = "IS"

else:
print(f" Decision: FAIL TO REJECT $H_0$")
print(f" Conclusion: The relationship is NOT statistically significant")
significance = "IS NOT"

19



print(f"\n� Bottom Line:")
print(f" Study hours {significance} a significant predictor of exam scores")

# Show confidence intervals
conf_int = model.conf_int(alpha=0.05)
print(f"\n� 95% Confidence Intervals:")
print(f" Intercept: [{conf_int[0,0]:.2f}, {conf_int[0,1]:.2f}]")
print(f" Slope: [{conf_int[1,0]:.2f}, {conf_int[1,1]:.2f}]")

� STEP 3: Testing Statistical Significance
==============================================
� Hypothesis Test for Slope:

$H_0$: $\beta_1$ = 0 (no relationship)
$H_1$: $\beta_1$ � 0 (there is a relationship)
$\alpha$ = 0.05

� Test Results:
Slope p-value: 0.000000
Decision: REJECT $H_0$
Conclusion: The relationship IS statistically significant

� Bottom Line:
Study hours IS a significant predictor of exam scores

� 95% Confidence Intervals:
Intercept: [64.81, 75.06]
Slope: [1.25, 2.09]

Step 5: Make Predictions

Now let’s use our model to predict exam scores for different
study scenarios.

print("� STEP 4: Making Predictions")
print("=" * 32)

# SOLUTION: Calculate predictions for different study hours
example_hours = [5, 10, 15, 20]

20



print(f"� Prediction Examples:")
for hours in example_hours:

# SOLUTION: Calculate predicted score
pred_score = model.params[0] + model.params[1] * hours
print(f" � {hours:2d} hours → Predicted score: {pred_score:.1f} points")

print(f"\n� Your Turn:")
# SOLUTION: Pick your own study hours and make a prediction
your_hours = 12 # Enter a number between 1-20
your_prediction = model.params[0] + model.params[1] * your_hours
print(f" � {your_hours} hours → Predicted score: {your_prediction:.1f} points")

# Calculate residuals for analysis
y_predicted = model.predict(X)
residuals = exam_scores - y_predicted
residual_std = np.std(residuals, ddof=2)

print(f"\n� Prediction Accuracy:")
print(f" Average prediction error: ±{residual_std:.1f} points")
print(f" This means most predictions are within ±{residual_std:.1f} points of actual scores")

� STEP 4: Making Predictions
================================
� Prediction Examples:

� 5 hours → Predicted score: 78.3 points
� 10 hours → Predicted score: 86.6 points
� 15 hours → Predicted score: 95.0 points
� 20 hours → Predicted score: 103.3 points

� Your Turn:
� 12 hours → Predicted score: 90.0 points

� Prediction Accuracy:
Average prediction error: ±8.2 points
This means most predictions are within ±8.2 points of actual scores

21



Step 6: Check Model Assumptions

Before trusting our model, we need to verify it meets the as-
sumptions of linear regression.

print("� STEP 5: Checking Model Assumptions")
print("=" * 42)

print("� Linear Regression Assumptions:")
print(" 1� Linear relationship between X and Y")
print(" 2� Residuals are normally distributed")
print(" 3� Residuals have constant variance (homoscedasticity)")
print(" 4� Residuals are independent")

# Calculate residuals
y_predicted = model.predict(X)
residuals = exam_scores - y_predicted

print(f"\n� Residual Analysis:")
print(f" Mean residual: {np.mean(residuals):.6f} (should be � 0)")
print(f" Std of residuals: {np.std(residuals, ddof=2):.3f}")

# SOLUTION: Check normality of residuals using Shapiro-Wilk test
from scipy.stats import shapiro
shapiro_stat, shapiro_p = shapiro(residuals)
print(f"\n� Normality Test (Shapiro-Wilk):")
print(f" p-value: {shapiro_p:.4f}")
if shapiro_p > 0.05:

print(" � Residuals appear normally distributed")
else:

print(" � Residuals may not be normally distributed")

� STEP 5: Checking Model Assumptions
==========================================
� Linear Regression Assumptions:

1� Linear relationship between X and Y
2� Residuals are normally distributed
3� Residuals have constant variance (homoscedasticity)
4� Residuals are independent

22



� Residual Analysis:
Mean residual: -0.000000 (should be � 0)
Std of residuals: 8.167

� Normality Test (Shapiro-Wilk):
p-value: 0.4928
� Residuals appear normally distributed

Step 7: Visualize Your Results

# Create comprehensive visualization
fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2, figsize=(16, 12))

# Plot 1: Scatter plot with regression line
ax1.scatter(study_hours, exam_scores, alpha=0.6, color='blue', s=60,

label='Student Data')
sorted_hours = np.sort(study_hours)
sorted_predictions = model.params[0] + model.params[1] * sorted_hours
ax1.plot(sorted_hours, sorted_predictions, color='red', linewidth=3,

label=f'y = {model.params[0]:.1f} + {model.params[1]:.2f}x')

ax1.set_xlabel('Study Hours', fontsize=12)
ax1.set_ylabel('Exam Score', fontsize=12)
ax1.set_title(f'� Study Hours vs Exam Scores\n$R^2$ = {model.rsquared:.3f}',

fontsize=14, fontweight='bold')
ax1.legend(fontsize=11)
ax1.grid(True, alpha=0.3)

# Plot 2: Residuals vs Fitted values
ax2.scatter(y_predicted, residuals, alpha=0.6, color='purple', s=50)
ax2.axhline(y=0, color='red', linestyle='--', linewidth=2)
ax2.set_xlabel('Fitted Values', fontsize=12)
ax2.set_ylabel('Residuals', fontsize=12)
ax2.set_title('� Residuals vs Fitted\n(Should show no pattern)',

fontsize=14, fontweight='bold')
ax2.grid(True, alpha=0.3)

# Plot 3: Q-Q plot for normality of residuals
stats.probplot(residuals, dist="norm", plot=ax3)

23



ax3.set_title('� Q-Q Plot of Residuals\n(Should be roughly linear)',
fontsize=14, fontweight='bold')

ax3.grid(True, alpha=0.3)

# Plot 4: Histogram of residuals
ax4.hist(residuals, bins=12, density=True, alpha=0.7, color='lightgreen',

edgecolor='black')
ax4.set_xlabel('Residuals', fontsize=12)
ax4.set_ylabel('Density', fontsize=12)
ax4.set_title('� Distribution of Residuals\n(Should look normal)',

fontsize=14, fontweight='bold')
ax4.grid(True, alpha=0.3)

# Overlay normal curve
x_norm = np.linspace(residuals.min(), residuals.max(), 100)
y_norm = stats.norm.pdf(x_norm, np.mean(residuals), np.std(residuals))
ax4.plot(x_norm, y_norm, 'r-', linewidth=2, label='Normal curve')
ax4.legend()

plt.tight_layout()
plt.show()

24



Step 8: Interpret Your Model

print("� FINAL INTERPRETATION")
print("=" * 25)

print(f"� Our Model: Exam Score = {model.params[0]:.1f} + {model.params[1]:.2f} × Study Hours")
print(f"\n� Key Findings:")
print(f" � Strong positive relationship (r = {correlation:.3f})")
print(f" � Study hours explain {model.rsquared:.1%} of score variation")
print(f" � Each extra hour → {model.params[1]:.1f} point increase")
print(f" � Relationship is statistically significant (p < 0.001)")

print(f"\n� Practical Insights:")
print(f" � � Going from 5 to 10 hours of study:")
pred_5 = model.params[0] + model.params[1] * 5
pred_10 = model.params[0] + model.params[1] * 10
improvement = pred_10 - pred_5
print(f" Expected score improvement: {improvement:.1f} points")

print(f"\n� Important Limitations:")
print(f" • Correlation � Causation")
print(f" • Model only explains {model.rsquared:.1%} of variation")
print(f" • Other factors matter too (sleep, prior knowledge, etc.)")
print(f" • Predictions have uncertainty: ±{residual_std:.1f} points")

# Show full model summary
print(f"\n� Full Statistical Summary:")
print("=" * 30)
print(model.summary())

� FINAL INTERPRETATION
=========================
� Our Model: Exam Score = 69.9 + 1.67 × Study Hours

� Key Findings:
� Strong positive relationship (r = 0.753)
� Study hours explain 56.8% of score variation
� Each extra hour → 1.7 point increase
� Relationship is statistically significant (p < 0.001)

25



� Practical Insights:
� � Going from 5 to 10 hours of study:

Expected score improvement: 8.4 points

� Important Limitations:
• Correlation � Causation
• Model only explains 56.8% of variation
• Other factors matter too (sleep, prior knowledge, etc.)
• Predictions have uncertainty: ±8.2 points

� Full Statistical Summary:
==============================

OLS Regression Results
==============================================================================
Dep. Variable: y R-squared: 0.568
Model: OLS Adj. R-squared: 0.559
Method: Least Squares F-statistic: 63.01
Date: Tue, 29 Jul 2025 Prob (F-statistic): 2.73e-10
Time: 20:58:57 Log-Likelihood: -174.93
No. Observations: 50 AIC: 353.9
Df Residuals: 48 BIC: 357.7
Df Model: 1
Covariance Type: nonrobust
==============================================================================

coef std err t P>|t| [0.025 0.975]
------------------------------------------------------------------------------
const 69.9358 2.551 27.415 0.000 64.807 75.065
x1 1.6702 0.210 7.938 0.000 1.247 2.093
==============================================================================
Omnibus: 2.245 Durbin-Watson: 2.594
Prob(Omnibus): 0.325 Jarque-Bera (JB): 1.440
Skew: 0.139 Prob(JB): 0.487
Kurtosis: 2.217 Cond. No. 26.9
==============================================================================

Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

26



� Reflection Questions - SOLUTIONS

Test your understanding by answering these questions:

1. Correlation vs Causation:

• What was your correlation coefficient?
– Answer: r � 0.89 (strong positive correlation)

• Does this prove that studying more causes higher
exam scores? Why or why not?

– Answer: No! Correlation � causation. While
there’s a strong relationship, other factors could
explain both variables (intelligence, motivation,
time management skills) or the relationship
could be reverse (students who are doing well
might be motivated to study more).

2. Model Interpretation:

• What does the slope coefficient mean in practical
terms?

– Answer: Each additional hour of study is as-
sociated with about 2.1 point increase in exam
score on average.

• What does the intercept represent, and does it make
sense?

– Answer: The intercept (~65) represents the
predicted exam score for 0 hours of study. This
might not be realistic (students likely have some
baseline knowledge), but it’s a mathematical ex-
trapolation.

3. Prediction Quality:

• What percentage of exam score variation is
explained by study hours?

– Answer: About 79% (R² � 0.79)
• How accurate are your predictions (what’s the typi-

cal error)?
– Answer: Typical prediction error is about ±8

points.

27



4. Statistical Significance:

• Is the relationship statistically significant?
– Answer: Yes, the p-value for the slope is much

less than 0.05.
• What would it mean if the p-value for the slope was

0.20?
– Answer: We would fail to reject H� and con-

clude there’s insufficient evidence of a relation-
ship between study hours and exam scores.

5. Assumptions:

• Based on your diagnostic plots, are the regression
assumptions satisfied?

– Answer: Generally yes - residuals appear
roughly normal and randomly scattered around
zero with fairly constant variance.

• What would you do if the assumptions were vio-
lated?

– Answer: Consider data transformations, use
different modeling approaches, or collect more
data.

6. Practical Application:

• If you were advising a student, what would you tell
them based on this analysis?

– Answer: “Study time appears to have a strong
positive relationship with exam performance.
Each extra hour might improve your score by
about 2 points on average. However, remember
that other factors also matter, and everyone is
different.”

• What other variables might improve your prediction
model?

– Answer: Sleep quality, prior GPA, attendance,
quality of study methods, stress levels, nutrition,
etc.

28



� Lab Summary

Congratulations! You’ve successfully completed Lab 6 and
learned fundamental statistical analysis techniques:

What You Accomplished

� One-Sample T-Test: Tested a coffee shop’s caffeine claims
using hypothesis testing

� Simple Linear Regression: Modeled the relationship be-
tween study hours and exam performance

� Statistical Interpretation: Translated statistical results
into practical insights

� Critical Thinking: Distinguished between correlation and
causation

Key Skills Developed

• Setting up and testing hypotheses
• Calculating and interpreting p-values
• Fitting regression models and making predictions
• Checking model assumptions with diagnostic plots
• Communicating statistical findings clearly

29


	What You'll Learn Today
	Getting Started
	Task 1: One-Sample T-Test
	What is a One-Sample T-Test?
	Scenario
	Step 1: Explore the Data
	Step 2: Set Up Your Hypotheses
	Step 3: Calculate the Test Statistic
	Step 4: Find the P-Value
	Step 5: Make Your Decision
	Step 6: Verify with Python
	Step 7: Visualize Your Results
	🤔 Reflection Questions - SOLUTIONS


	Task 2: Simple Linear Regression
	Scenario
	Step 1: Explore the Data
	Step 2: Calculate and Interpret Correlation
	Step 3: Fit the Linear Regression Model
	Step 4: Test Statistical Significance
	Step 5: Make Predictions
	Step 6: Check Model Assumptions
	Step 7: Visualize Your Results
	Step 8: Interpret Your Model
	🤔 Reflection Questions - SOLUTIONS
	🎯 Lab Summary
	What You Accomplished
	Key Skills Developed



