PSTAT 5A Lab 1
Introduction to Python and JupyterHub
Student Name: ________________________
Table of contents

[image: ../../../img/logo.png]
Welcome to the first PSTAT 5A Lab! As we will soon learn, computers play an integral part in effectively and efficiently performing statistical analyses. The primary goal of these Labs is to develop the skills to communicate with computers and learn the basic principles and language of programming.
This first lab will introduce you to the JupyterHub environment, Python as a programming language, and some basic concepts of programming. You will also complete a series of tasks to familiarize yourself with the tools and concepts we will use throughout the course.
This lab is designed to be completed during your first lab section of the week, and it will set the foundation for the rest of the course. Make sure to read through all the material carefully, as it will be essential for your success in PSTAT 5A.

1 Structure of Labs
Every week we (the course staff) will publish a lab document, which is intended to be completed during your Lab Section (i.e., your first Section) of the week. Each lab document will consist of a combination of text, tips, and the occasional task for you to complete based on the text provided. Your TA will cover exactly what you need to turn in at the end of each lab in order to receive credit, but you should read all lab material carefully and thoroughly as content from labs will appear on quizzes and exams.

2 What Is Programming?
Computers, though incredibly useful, are fairly complex machines. To communicate with them, we need to use a specific language, known as a programming language. There are a number of programming languages currently in use—R, Julia, MatLab, and the language we will use for this course, Python.
Python programs can be written in many environments (e.g., text editors like VS Code or in a Terminal window). For this class we will use Jupyter Notebook (pronounced “Jew-pi-ter”), an interactive environment that’s hosted online so you don’t have to install anything to run Python code!

3 Getting Started
1. Navigate to https://pstat5a.lsit.ucsb.edu
· If you are using a personal computer, you may want to bookmark this page for easy access later.
1. Click Sign in with your UCSB NetID, and sign in.
[image: ../../../files/labs/lab1/img/sign_in.png]
1. Navigate to the Labs folder on the left-hand side of the JupyterHub interface. [image: ../../../files/labs/lab1/img/navigate_to_labs.png]
1. Under Notebook, click Python 3 (ipykernel).
[image: ../../../files/labs/lab1/img/select_notebook.png]
Congratulations, you have just made your first Jupyter notebook! Now, it’s time for our first task:

4 Task 1: Rename Your Notebook
1. Find your new notebook in the left-hand file browser (it will be named Untitled or Untitled1 by default).

1. Right-click the notebook and select → Rename.
[image: ../../../files/labs/lab1/img/right_click_to_rename.png]
1. Rename it to Lab1 and hit Enter.
[image: ../../../files/labs/lab1/img/rename_notebook.png]
1. Watch the title bar update to Lab1.ipynb.

5 The JupyterHub Environment
Jupyter notebooks are built from cells—the shaded boxes you see on screen. Here’s how to work with them:
5.1 Cell Activation
· Inactive cell
· Appearance: light grey background

· Action: click anywhere inside the cell to activate
[image: ../../../files/labs/lab1/img/cell_color.png]
· Active cell
· Appearance: colored border (green or blue)

· You can now type code or Markdown here.
	[image: /Applications/quarto/share/formats/docx/tip.png] Tip

	Only the active cell runs when you press Run.

5.2 Running Cells
· Click the ▶️ Run button in the toolbar

· Or press Shift + Enter to run and advance to the next cell
[image: ../../../files/labs/lab1/img/run_button.png]

6 Cell Types
You can switch any cell between Code and Markdown:
6.1 Code Cells
· Purpose: write and execute Python code

· Select:
7. Click the cell

7. Choose Code from the toolbar dropdown
[image: ../../../files/labs/lab1/img/change_cell_type.png]

· Run: ▶️ Run button or Shift + Enter
6.2 Markdown Cells
· Purpose: write formatted text, headings, lists, math, and embed images

· Select:
7. Click the cell

7. Choose Markdown from the toolbar dropdown
[image: ../../../files/labs/lab1/img/markdown_cell.png]
· Render: ▶️ Run button or Shift + Enter

7 Task 2: Markdown and Code Cells
1. Click into the initial cell (marked by [] on the left).

1. In the toolbar dropdown (that currently says Code), select Markdown.

1. Copy-paste the following (including the #):
· # Task 2
1. Run the cell. You should see a large heading that says “Task 2”.
1. Add a new cell below (use the + button or menu).
1. Make sure the new cell is a Code cell.
1. Enter the following code and run it:
· 2 + 2
Expected Output:
4

8 Task 3: Understanding Errors
1. Add a new Markdown cell with the heading:
· # Task 3
1. Add a new Code cell and enter the following (intentional error):
· 2 plus 2
1. Run the cell. You should see an error message like:
 Cell In[2], line 1
 2 plus 2
 ^^^^
SyntaxError: invalid syntax
Explanation: - Python doesn’t understand plus as an operator - The ^^^^ points to where Python detected the problem - The error message tells us it’s a SyntaxError meaning invalid Python syntax - In Python, we must use + for addition, not the word plus
1. Correct the code to:
· 2 + 2 # This works correctly
1. Run the corrected cell. You should see:
4

9 Task 4: Math in Python
1. In a new Code cell, compute the following:
·
· (2 + 3) / (4 + 5**6)
1. Break it down step by step:
· numerator = 2 + 3
print(f"Numerator: {numerator}")

denominator = 4 + 5**6
print(f"Denominator: {denominator}")

result = numerator / denominator
print(f"Final result: {result}")
Expected Output:
Numerator: 5
Denominator: 15629
Final result: 0.00032002048131121975
1. Try this one as well:
·
· (1 - 3 * 4**5)**6
· Step by step:
· inner_exponent = 4**5
print(f"4^5 = {inner_exponent}")

multiplication = 3 * inner_exponent
print(f"3 * 4^5 = {multiplication}")

subtraction = 1 - multiplication
print(f"1 - 3 * 4^5 = {subtraction}")

final_result = subtraction**6
print(f"(1 - 3 * 4^5)^6 = {final_result}")
Expected Output:
4^5 = 1024
3 * 4^5 = 3072
1 - 3 * 4^5 = -3071
(1 - 3 * 4^5)^6 = 729071973630476174071

10 Task 5: Importing Modules
1. In a new Code cell, try running:
· sin(1)
· You should see:
· NameError: name 'sin' is not defined
1. To fix this, import the math module:
· from math import *
sin(1)
· Expected Output:
· 0.8414709848078965
1. Alternative ways to import and use sin:
· # Method 1: Import specific function
from math import sin
print(sin(1))

Method 2: Import entire module
import math
print(math.sin(1))

Method 3: Import with alias
import math as m
print(m.sin(1))

11 Task 6: Case Sensitivity
1. Assign a value to a variable:
· my_variable = 5
1. Try printing with the wrong capitalization:
· print(My_variable)
· You should see:
· NameError: name 'My_variable' is not defined
1. Print with the correct capitalization:
· print(my_variable)
· Output:
· 5
1. Try these examples to see how Python treats variable names:
· my_variable = 5
My_variable = 10
MY_VARIABLE = 15
my_Variable = 20

print(f"my_variable = {my_variable}")
print(f"My_variable = {My_variable}")
print(f"MY_VARIABLE = {MY_VARIABLE}")
print(f"my_Variable = {my_Variable}")
· Output:
· my_variable = 5
My_variable = 10
MY_VARIABLE = 15
my_Variable = 20

12 Task 7: Commenting Code
Add comments to your code from previous tasks. For example:
Task 2: Basic arithmetic
2 + 2 # Adding two integers

Task 4: Complex mathematical expression
Calculate (2 + 3) / (4 + 5^6)
numerator = 2 + 3 # Sum of 2 and 3
denominator = 4 + 5**6 # 4 plus 5 to the 6th power
result = numerator / denominator # Final division
print(f"Result: {result}")

Task 5: Import math module and use sin function
from math import * # Import all math functions
angle_in_radians = 1 # Input angle in radians
sine_value = sin(angle_in_radians) # Calculate sine
print(f"sin(1) = {sine_value}")

Task 6: Variable assignment with proper naming
my_variable = 5 # Store the value 5 in my_variable
print(my_variable) # Display the value

"""
This is a multi-line comment.
It can span multiple lines and is useful
for longer explanations or documentation.
"""
Good commenting practices: - Explain what the code does - Clarify complex calculations - Document variable purposes - Use both inline (#) and block (""") comments

13 Task 8: Data Types
1. Use the type() function to check data types:
· print(type(1)) # Output: <class 'int'>
print(type(1.1)) # Output: <class 'float'>
print(type("hello")) # Output: <class 'str'>
1. Try more examples:
· print("Integer:", type(42))
print("Float:", type(3.14159))
print("String with single quotes:", type('Python'))
print("String with double quotes:", type("Programming"))
print("Boolean True:", type(True))
print("Boolean False:", type(False))
print("List:", type([1, 2, 3]))
print("Tuple:", type((1, 2, 3)))
print("Dictionary:", type({"key": "value"}))

14 Task 9: Variables and Calculations
1. Add a Markdown cell:
· # Task 9
1. Assign values to variables:
· course = "PSTAT 5A"
num_sections = 4
section_capacity = 25
1. Update num_sections:
· num_sections = num_sections + 1
print(f"Updated number of sections: {num_sections}")
Alternative: num_sections += 1
Alternative: num_sections = 4 + 1
1. Predict and test expressions:
· print(type(course)) # Expected: <class 'str'>
print(type(num_sections)) # Expected: <class 'int'>
print(num_sections * section_capacity) # Expected: 125
1. Calculate course capacity:
· course_capacity = num_sections * section_capacity
print(f"Course: {course}")
print(f"Number of sections: {num_sections}")
print(f"Capacity per section: {section_capacity}")
print(f"Total course capacity: {course_capacity}")
1. Complete solution with comments:
· # Step 2: Initial variable assignments
course = "PSTAT 5A" # Course name as string
num_sections = 4 # Initial number of sections
section_capacity = 25 # Maximum students per section

Step 3: A new section has been added
num_sections = num_sections + 1 # Increment by 1, now equals 5

Step 4: Testing expressions with predictions
print("Testing type() function:")
print(f"type(course) = {type(course)}") # Expected: <class 'str'>
print(f"type(num_sections) = {type(num_sections)}") # Expected: <class 'int'>
print(f"num_sections * section_capacity = {num_sections * section_capacity}") # Expected: 125

Step 5: Calculate total course capacity
course_capacity = num_sections * section_capacity # 5 × 25 = 125
print(f"\nFinal Results:")
print(f"Course: {course}")
print(f"Total sections: {num_sections}")
print(f"Capacity per section: {section_capacity}")
print(f"Total course capacity: {course_capacity} students")

15 Summary of Key Concepts Learned
· JupyterHub Environment: Creating and renaming notebooks, understanding cell types (Code vs Markdown), running cells, navigating the interface
· Python Basics: Arithmetic operations, order of operations, error reading
· Variables and Data Types: Assignment, case sensitivity, types, type()
· Modules and Imports: Import syntax, using functions, math module
· Comments and Documentation: Inline and block comments, purpose
· Programming Best Practices: Descriptive variable names, comments, incremental testing, reading errors, using variables

16 Next Steps
In Lab 2, you’ll learn about: - Python functions and how to create them - Data structures (lists, dictionaries) - Control flow (if statements, loops) - More advanced programming concepts
Great work completing Lab 1! You now have the foundation needed for statistical programming in Python.
rId20.png

rId26.png
<« - C 25 pstatba.lsit.ucsb.edu/hub/login

 Jupyterhub

Sign in with UCSBnetID

rId29.png
= t Cc ¢ 2 Launcher
o’
./ 4| Notebook
0 Name - Modified
8 Labs 4m ago ﬁ
8 lost+found 22h ago é
Python 3
(ipykernel)
228 Console
Python 3

(ipykernel)

rId32.png
File Edit View Run Kernel Git Tabs Settings Help

= + Cc ¢ 4 Launcher +

0.

Y

o Labs
8 /Labs/
® Name - Modified 4| Notebook
Python 3

(ipykernel)

rId36.png
0.

File Edit View Run Kernel Git Tabs Settings Help

+ Cc ¢ [®] Untitled.ipynb e +

B+ X OO » m C » Code

Y
B/ Labs/ I [1:

Name - Modified

o [W] Untitled.ipynb -

8 Open
Open With >

+ Open in New Browser Tab

/' Rename F2
Q Git 3
X Delete ®
¥ Cut #® X
O Copy ®C
[*] Paste H Y]
0] Duplicate #D

¥ Download
B Shut Down Kernel

7] Copy Download Link
Copy Path
Copy Shareable Link

D

0]
V]

New File

New Notebook

= m

New Text Notebook »

New Folder

2

Shift+Right Click for Browser Menu

rId39.png
Name - Modified

rId43.png
[LabT.ipynb X
B+ X DO » ®m C » Code v ®© ¢t ~ Openin.. # Python 3 (ipykernel) O =

|[1:| B L as TR

rId46.png

rId50.png
[® Lab1.ipynb X |+

B+ X 0O O] »|m ¢ » Markdown v O it ~ Openin.. # Python 3 (ipykernel) O =

I } Run this cell and advance (¢ Q) [’

BTy & FE

rId55.png
[%] Lab1.ipynb

B+ XD OO » m C » vCode
Markdown
| o Raw

! ®© it ~ Openin.. # Python 3 (ipykernel) O =

BTy & FE

rId59.png
File Edit View Run Kernel Git Tabs

s oC o

Y

Settings Help

(@}

[%] Lab1.ipynb
B + XDO »

| © & ~ Openin.. # Python 3 (ipykernel) O =

| B L s

Modified

¢ O =&

o [W] Labl.ipynb

